Abstract

Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

Keywords: wood structure, physical properties (wood), mechanical properties (wood), lumber, wood-based composites, plywood, panel products, design, fastenings, wood moisture, drying, gluing, fire resistance, finishing, decay, sandwich construction, preservation, and wood-based products

March 1999

A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705–2398. Laboratory publications are sent to hundreds of libraries in the United States and elsewhere. This publication may also be viewed on the FPL website at www.fpl.fs.fed.us/.

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin.

The use of trade or firm names is for information only and does not imply endorsement by the U.S. Department of Agriculture of any product or service.

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, or marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (braille, large print, audiotape, etc.) should contact the USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250–9410, or call (202) 720–5964 (voice and TDD). USDA is an equal employment opportunity employer.

Pesticide Precautionary Statement

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

Caution: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife, if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>vii</td>
</tr>
<tr>
<td>Contributors</td>
<td>xi</td>
</tr>
<tr>
<td>1</td>
<td>Characteristics and Availability of Commercially Important Wood</td>
</tr>
<tr>
<td></td>
<td>Timber Resources and Uses 1–2</td>
</tr>
<tr>
<td></td>
<td>Species Descriptions 1–3</td>
</tr>
<tr>
<td></td>
<td>U.S. Wood Species 1–3</td>
</tr>
<tr>
<td></td>
<td>Imported Woods 1–17</td>
</tr>
<tr>
<td></td>
<td>References 1–34</td>
</tr>
<tr>
<td>2</td>
<td>Structure of Wood</td>
</tr>
<tr>
<td></td>
<td>Bark, Wood, Branches, and Cambium 2–1</td>
</tr>
<tr>
<td></td>
<td>Sapwood and Heartwood 2–2</td>
</tr>
<tr>
<td></td>
<td>Growth Rings 2–2</td>
</tr>
<tr>
<td></td>
<td>Wood Cells 2–3</td>
</tr>
<tr>
<td></td>
<td>Chemical Composition 2–3</td>
</tr>
<tr>
<td></td>
<td>Species Identification 2–4</td>
</tr>
<tr>
<td></td>
<td>References 2–4</td>
</tr>
<tr>
<td>3</td>
<td>Physical Properties and Moisture Relations of Wood</td>
</tr>
<tr>
<td></td>
<td>Appearance 3–1</td>
</tr>
<tr>
<td></td>
<td>Moisture Content 3–5</td>
</tr>
<tr>
<td></td>
<td>Shrinkage 3–7</td>
</tr>
<tr>
<td></td>
<td>Weight, Density, and Specific Gravity 3–11</td>
</tr>
<tr>
<td></td>
<td>Working Qualities 3–15</td>
</tr>
<tr>
<td></td>
<td>Decay Resistance 3–15</td>
</tr>
<tr>
<td></td>
<td>Thermal Properties 3–15</td>
</tr>
<tr>
<td></td>
<td>Electrical Properties 3–21</td>
</tr>
<tr>
<td></td>
<td>Coefficient of Friction 3–22</td>
</tr>
<tr>
<td></td>
<td>Nuclear Radiation 3–23</td>
</tr>
<tr>
<td></td>
<td>References 3–23</td>
</tr>
<tr>
<td>4</td>
<td>Mechanical Properties of Wood</td>
</tr>
<tr>
<td></td>
<td>Orthotropic Nature of Wood 4–1</td>
</tr>
<tr>
<td></td>
<td>Elastic Properties 4–2</td>
</tr>
<tr>
<td></td>
<td>Strength Properties 4–3</td>
</tr>
<tr>
<td></td>
<td>Vibration Properties 4–25</td>
</tr>
<tr>
<td></td>
<td>Mechanical Properties of Clear Straight-Grained Wood 4–26</td>
</tr>
<tr>
<td></td>
<td>Natural Characteristics Affecting Mechanical Properties 4–27</td>
</tr>
<tr>
<td></td>
<td>Effects of Manufacturing and Service Environments 4–34</td>
</tr>
<tr>
<td></td>
<td>References 4–44</td>
</tr>
<tr>
<td>5</td>
<td>Commercial Lumber</td>
</tr>
<tr>
<td></td>
<td>Hardwood Lumber 5–1</td>
</tr>
<tr>
<td></td>
<td>Softwood Lumber 5–7</td>
</tr>
<tr>
<td></td>
<td>Purchase of Lumber 5–12</td>
</tr>
<tr>
<td></td>
<td>Commonly Used Lumber Abbreviations 5–18</td>
</tr>
<tr>
<td></td>
<td>References 5–20</td>
</tr>
<tr>
<td>6</td>
<td>Lumber Stress Grades and Design Properties</td>
</tr>
<tr>
<td></td>
<td>Responsibilities and Standards for Stress Grading 6–2</td>
</tr>
<tr>
<td></td>
<td>Visually Graded Structural Lumber 6–3</td>
</tr>
<tr>
<td></td>
<td>Machine-Graded Structural Lumber 6–7</td>
</tr>
<tr>
<td></td>
<td>Adjustment of Properties for Design Use 6–11</td>
</tr>
<tr>
<td></td>
<td>References 6–14</td>
</tr>
<tr>
<td>7</td>
<td>Fastenings</td>
</tr>
<tr>
<td></td>
<td>Nails 7–2</td>
</tr>
<tr>
<td></td>
<td>Spikes 7–8</td>
</tr>
<tr>
<td></td>
<td>Staples 7–8</td>
</tr>
<tr>
<td></td>
<td>Drift Bolts 7–9</td>
</tr>
<tr>
<td></td>
<td>Wood Screws 7–9</td>
</tr>
<tr>
<td></td>
<td>Lag Screws 7–11</td>
</tr>
<tr>
<td></td>
<td>Bolts 7–14</td>
</tr>
<tr>
<td></td>
<td>Connector Joints 7–18</td>
</tr>
<tr>
<td></td>
<td>Multiple-Fastener Joints 7–24</td>
</tr>
<tr>
<td></td>
<td>Metal Plate Connectors 7–25</td>
</tr>
<tr>
<td></td>
<td>Fastener Head Embedment 7–26</td>
</tr>
<tr>
<td></td>
<td>References 7–27</td>
</tr>
<tr>
<td>8</td>
<td>Structural Analysis Equations</td>
</tr>
<tr>
<td></td>
<td>Deformation Equations 8–1</td>
</tr>
<tr>
<td></td>
<td>Stress Equations 8–4</td>
</tr>
<tr>
<td></td>
<td>Stability Equations 8–8</td>
</tr>
<tr>
<td></td>
<td>References 8–11</td>
</tr>
<tr>
<td>9</td>
<td>Adhesive Bonding of Wood Materials</td>
</tr>
<tr>
<td></td>
<td>Adhesion to Wood 9–1</td>
</tr>
<tr>
<td></td>
<td>Surface Properties of Wood Adherends 9–2</td>
</tr>
<tr>
<td></td>
<td>Physical Properties of Wood Adherends 9–6</td>
</tr>
<tr>
<td></td>
<td>Adhesives 9–9</td>
</tr>
<tr>
<td></td>
<td>Bonding Process 9–15</td>
</tr>
<tr>
<td></td>
<td>Bonded Joints 9–18</td>
</tr>
<tr>
<td></td>
<td>Testing and Performance 9–20</td>
</tr>
<tr>
<td></td>
<td>References 9–23</td>
</tr>
</tbody>
</table>
10 Wood-Based Composites and Panel Products
 Scope 10–2
 Types of Conventional Composite Materials 10–3
 Adhesive Considerations 10–3
 Additives 10–4
 General Manufacturing Issues 10–4
 Standards for Wood–Based Panels 10–4
 Plywood 10–6
 Particle and Fiber Composites 10–13
 Wood–Nonwood Composites 10–24
 References 10–30

11 Glued Structural Members
 Structural Composite Lumber 11–1
 Glulam 11–3
 Glued Members With Lumber and Panels 11–12
 Structural Sandwich Construction 11–16
 References 11–21

12 Drying and Control of Moisture Content and Dimensional Changes
 Determination of Moisture Content 12–1
 Recommended Moisture Content 12–3
 Drying of Wood 12–5
 Moisture Control During Transit and Storage 12–14
 Dimensional Changes in Wood 12–15
 Design Factors Affecting Dimensional Change 12–18
 Wood Care and Installation During Construction 12–18
 References 12–20

13 Biodeterioration of Wood
 Fungus Damage and Control 13–1
 Bacteria 13–8
 Insect Damage and Control 13–8
 Marine Borer Damage and Control 13–13
 References 13–15

14 Wood Preservation
 Wood Preservatives 14–2
 Preservative Effectiveness 14–12
 Effect of Species on Penetration 14–12
 Preparation of Timber for Treatment 14–17
 Application of Preservatives 14–19
 Handling and Seasoning of Timber After Treatment 14–24
 Quality Assurance for Treated Wood 14–25
 References 14–26

15 Finishing of Wood
 Factors Affecting Finish Performance 15–1
 Control of Water or Moisture in Wood 15–9
 Types of Exterior Wood Finishes 15–14
 Application of Wood Finishes 15–19
 Finish Failure or Discoloration 15–24
 Finishing of Interior Wood 15–30
 Finishes for Items Used for Food 15–32
 Wood Cleaners and Brighteners 15–33
 Paint Strippers 15–33
 References 15–36

16 Use of Wood In Building and Bridges
 Light-Frame Buildings 16–1
 Post-Frame and Pole Buildings 16–4
 Log Buildings 16–6
 Heavy Timber Buildings 16–6
 Timber Bridges 16–9
 Considerations for Wood Buildings 16–10
 References 16–14

17 Fire Safety
 Fire Safety Design and Evaluation 17–1
 Fire Performance Characteristics of Wood 17–6
 Flame-Retardant Treatments 17–12
 References 17–13

18 Round Timbers and Ties
 Standards and Specifications 18–1
 Material Requirements 18–1
 Availability 18–2
 Form 18–3
 Weight and Volume 18–5
 Durability 18–6
 Strength Properties 18–7
 References 18–8

19 Specialty Treatments
 Plasticizing Wood 19–1
 Modified Woods 19–4
 Paper-Based Plastic Laminates 19–12
 References 19–14

Glossary G–1

Index I–1
Preface

Efficient use of our nation’s timber resource is a vital concern. Because a major use of wood in the United States is in construction, particularly housing construction, good practice in this endeavor can have a profound impact on the resource. This handbook is intended as an aid to more efficient use of wood as a construction material. It provides engineers, architects, and others with a source of information on the physical and mechanical properties of wood and how these properties are affected by variations in the wood itself. Continuing research and evaluation techniques hold promise for wider and more efficient utilization of wood and for more advanced industrial, structural, and decorative uses.

This handbook was prepared by the Forest Products Laboratory (FPL), a unit of the research organization of the Forest Service, U.S. Department of Agriculture. The Laboratory, established in 1910, is maintained at Madison, Wisconsin, in cooperation with the University of Wisconsin. It was the first institution in the world to conduct general research on wood and its utilization. The accumulation of information that has resulted from its engineering and allied investigations of wood and wood products over nine decades—along with knowledge of everyday construction practices and problems—is the chief basis for this handbook.

The Wood Handbook was first issued in 1935, and slightly revised in 1939, as an unnumbered publication. Further revisions in 1955, 1974, and 1987 were published by the U.S. Department of Agriculture as Agriculture Handbook No. 72. This current work is a complete revision of the 1987 edition. This revision was necessary to reflect more recent research accomplishments and technological changes.

The audience for the Wood Handbook is fairly broad. Therefore, the coverage of each chapter is aimed at providing a general discussion of the topic, with references included for additional information. Past versions of the Wood Handbook tended to report only the findings and applications of FPL research. Although the handbook is not intended to be a state-of-the-art review, this approach would now leave significant gaps in some important areas. The current edition has broadened the sources of information to provide better coverage of important topics.

The organization of this version of the Wood Handbook is similar to previous ones, with some modifications:

- Plywood (chapter 11 in the previous version), insulation board, hardboard, medium-density fiberboard (part of chapter 21 in the previous version), and wood-based particle panel materials (chapter 22 in the previous version) are now included in a new chapter on wood-based composites and panel products.

- Structural sandwich construction (chapter 12 in the previous version) is now included in the chapter on glued structural members.

- Moisture movement and thermal insulation in light-frame structures (chapter 20 in the previous version) are now part of a new chapter on use of wood in buildings and bridges.

- Bent wood members (chapter 13 in the previous version), modified woods, and paper-based laminates (chapter 23 in the previous version) are now included in a chapter on specialty treatments.

Consistent with movement by many U.S. standards agencies and industry associations toward use of metric units and near-universal implementation of metric usage in the international community, units of measurement in this version of the handbook are provided primarily in metric units, with customary inch-pound equivalents as secondary units. All conversions in this handbook to metric units, including conversions of empirically derived equations, are direct (or soft) conversions from previously derived inch-pound values. At some future time, metric expressions may need to be derived from a reevaluation of original research.
Acknowledgments

We gratefully acknowledge the extraordinary effort of the following individuals in their review of the final draft of this entire volume. Their effort has substantially enhanced the clarity, consistency, and coverage of the Wood Handbook.

Donald Bender
Wood Materials & Engineering Laboratory
Washington State University
Pullman, Washington

Arthur Brauner
Forest Products Society
Madison, Wisconsin

Bradford Douglas
American Forest & Paper Association
Washington, DC

David Green
USDA Forest Service, Forest Products Laboratory
Madison, Wisconsin

Michael Hunt
Department of Forestry and Natural Resources
Purdue University
West Lafayette, Indiana

Thomas McLain
Department of Forest Products
Oregon State University
Corvallis, Oregon

Russell Moody
Madison, Wisconsin

Michael O’Halloran
APA—The Engineered Wood Association
Tacoma, Washington

Erwin Schaffer
Sun City West, Arizona

Contributors to the Wood Handbook are indebted to the following individuals and organizations for their early technical review of chapter manuscripts.

Terry Amburgey
Forest Products Laboratory
Mississippi State University
Mississippi State, Mississippi

Jon Arno
Troy, Minnesota

B. Alan Bendtsen
Madison, Wisconsin

A. William Boehner
Trus Joist MacMillan
Boise, Idaho

R. Michael Caldwell
American Institute of Timber Construction
Englewood, Colorado

Donald Carr
NAHB—National Research Center
Upper Marlboro, Maryland

Richard Caster
Weyerhaeuser Company
Tacoma, Washington

Kevin Cheung
Western Wood Products Association
Portland, Oregon

Stephen Clark
Northeastern Lumber Manufacturers Association
Cumberland Center, Maine

Richard Cook
National Casein Company
Santa Ana, California

William Crossman
Atlanta Wood Industries
Savannah, Georgia
Thomas Daniels
Energy Products of Idaho
Coeur D’Alene, Idaho

Donald DeVisser
West Coast Lumber Inspection Bureau
Portland, Oregon

Bradford Douglas
American Forest and Paper Association
Washington, DC

Stan Elberg
National Oak Flooring Manufacturers Association
Memphis, Tennessee

Paul Foehlich
Southern Cypress Manufacturers Association
Pittsburgh, Pennsylvania

Barry Goodell
Forest Products Laboratory
University of Maine
Orono, Maine

Kevin Haile
HP&VA
Reston, Virginia

Daniel Hare
The Composite Panel Association
Gaithersburg, Maryland

R. Bruce Hoadley
Forestry Department
University of Massachusetts
Amherst, Massachusetts

David Hon
Department of Forest Resources
Clemson University
Clemson, South Carolina

Robert Hunt
Western Wood Products Association
Portland, Oregon

Lisa Johnson
Southern Pine Inspection Bureau
Pensacola, Florida

Tom Jones
Southern Pine Inspection Bureau
Pensacola, Florida

Charles Jourdain
California Redwood Association
Novato, California

John Kressbach
Gillette, New Jersey

Robert Kundrot
Nestle Resins Corporation
Springfield, Oregon

Steven Lawser
Wood Component Manufacturers Association
Marietta, Georgia

Phillip Line
American Forest & Paper Association
Washington, DC

Joseph Loferski
Brooks Forest Products Center
Blacksburg, Virginia

Maple Flooring Manufacturers Association
Northbrook, Illinois

Thomas McLain
Department of Forest Products
Oregon State University
Corvallis, Oregon

David McLean
Civil Engineering Department
Washington State University
Pullman, Washington

Rodney McPhee
Canadian Wood Council
Ottawa, Ontario, Canada

Michael Milota
Oregon State University
Corvallis, Oregon

Jeffrey Morrell
Department of Forest Products
Oregon State University
Corvallis, Oregon

National Hardwood Lumber Association
Memphis, Tennessee

Darrel Nicholas
Forest Products Laboratory
Mississippi State University
Mississippi State, Mississippi

Michael O’Halloran
APA—The Engineered Wood Association
Tacoma, Washington
Perry Peralta
Department of Wood and Paper Science
North Carolina State University
Raleigh, North Carolina

David Plackett
Forintek Canada Corporation
Vancouver, British Columbia, Canada

David Pollock
Civil Engineering Department
Washington State University
Pullman, Washington

Redwood Inspection Service
Mill Valley, California

Alan Ross
Kop–Coat Inc.
Pittsburgh, Pennsylvania

Thomas Searles
American Lumber Standards Committee
Germantown, Maryland

James Shaw
Weyerhaeuser Company
Tacoma, Washington

Bradley Shelley
West Coast Lumber Inspection Bureau
Portland, Oregon

Ramsey Smith
Louisiana Forest Products Laboratory
Baton Rouge, Louisiana

William Smith
SUNY–ESF
Wood Products Engineering
Syracuse, New York

Edward Starostovic
PFS/TECO Corporations
Madison, Wisconsin

Louis Wagner
American Hardwood Association
Palatine, Illinois

Eugene Wengert
Department of Forestry
University of Wisconsin
Madison, Wisconsin

Michael Westfall
Red Cedar Shingle & Handsplit Shake Bureau
Bellevue, Washington

Borjen Yeh
APA—The Engineered Wood Association
Tacoma, Washington
Contributors

The following staff of the Forest Products Laboratory contributed to the writing, revision, and compilation of information contained in the Wood Handbook.

Mark A. Dietenberger
Research General Engineer

David W. Green
Supervisory Research General Engineer

David E. Kretschmann
Research General Engineer

Roland Hernandez
Research General Engineer

Terry L. Highley
Supervisory Research Plant Pathologist (retired)

Rebecca E. Ibach
Chemist

Jen Y. Liu
Research General Engineer

Kent A. McDonald
Research Forest Products Technologist (retired)

Regis B. Miller
Botanist

Russell C. Moody
Supervisory Research General Engineer (retired)

Roger M. Rowell
Supervisory Research Chemist

William T. Simpson
Research Forest Products Technologist

Lawrence A. Soltis
Research General Engineer

Anton TenWolde
Research Physicist

Ronald W. Wolfe
Research General Engineer

Charles B. Vick
Research Forest Products Technologist

Robert H. White
Supervisory Wood Scientist

R. Sam Williams
Supervisory Research Chemist

Jerrold E. Winandy
Research Forest Products Technologist

John A. Youngquist
Supervisory Research General Engineer