United States Department of Agriculture

Forest Service
Forest
Products Laboratory

Research
Paper
FPL-RP-607


## Heat Sterilization Time of Ponderosa Pine and Douglas-Fir Boards and Square Timbers

William T. Simpson
Xiping Wang
Steve Verrill


## Abstract

To prevent the unintentional transfer of insects and pathogens during world trade, wood products are often heat sterilized. The general requirement is that the center of the wood configuration be held at $133^{\circ} \mathrm{F}\left(56^{\circ} \mathrm{C}\right)$ for 30 min . However, many factors can affect the time required to reach this temperature. This study explored several of these factors, including thickness of boards or cross-sectional dimension of square timbers, wet-bulb depression, and stacking method (solid or stickered). The heating temperature used was $160^{\circ} \mathrm{F}$ $\left(71^{\circ} \mathrm{C}\right)$. Heating time increased with increasing board thickness or increasing cross-sectional dimension. It also increased as wet-bulb depression increased because of surface cooling when simultaneous drying occurred at significant wet-bulb depressions. Solid piling increased heating time by a factor ranging from 2 to 10 compared with stickered piling, depending on species and size. This study also looked at developing an analytical method to predict heating time as a function of heating variables. Multiple regression was successful as a prediction tool as a function of wood size, wetbulb depression, and initial wood temperature as long as the wet-bulb temperature in the heating chamber was higher than the target center temperature. The multiple regression results were used to create $99 \%$ upper confidence levels on estimated heating times.

Keywords: heat sterilization, lumber, dry kilns

April 2003
Simpson, William T.; Wang, Xiping; Verrill, Steve. 2003. Heat sterilization time of ponderosa pine and Douglas-fir boards and square timbers. Res. Pap. FPL-RP-607. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 24 p.

A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726-2398. This publication is also available online at www.fpl.fs.fed.us. Laboratory publications are sent to hundreds of libraries in the United States and elsewhere.

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin.

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact the USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410, or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.

## Acknowledgments

We thank the American Lumber Standards Committee, Inc., the Western Wood Products Association, and the Pacific Lumber Inspection Bureau for supporting this study.

## Contents

Page
Introduction. ..... 1
Background ..... 1
Experimental Methods ..... 2
Analytical Methods ..... 4
Results ..... 4
Experimental Heating Times. ..... 4
MacLean Estimates of Heating Times ..... 7
Finite Difference Estimates of Heating Times ..... 8
Multiple Regression ..... 8
Predicted Heating Times ..... 9
Conclusions ..... 10
References ..... 11
Appendix-Equations for Calculating Upper Confidence Levels of Heating Times ..... 24

# Heat Sterilization Time of Ponderosa Pine and Douglas-Fir Boards and Square Timbers 

William T. Simpson, Research Forest Products Technologist<br>Xiping Wang, Engineer<br>Steve Verrill, Mathematical Statistician<br>Forest Products Laboratory, Madison, Wisconsin

## Introduction

Heat sterilization of lumber, timbers, and pallets is currently used to kill insects to prevent their transfer between countries in international trade. A typical requirement is that the center of any wood configuration be held at $133^{\circ} \mathrm{F}\left(56^{\circ} \mathrm{C}\right)$ for 30 min . However, the time required for the center to reach this temperature can vary widely depending on a number of factors such as wood species, wood specific gravity and moisture content, cross-sectional dimensions, initial temperature, heating temperature, heating medium (wet or dry heat), and stacking method. The broad objective of this study was to quantify the effects of cross-sectional dimensions, heating medium, and stacking method on the time required to heat the center of ponderosa pine and Douglas-fir lumber and timbers to $133^{\circ} \mathrm{F}$ at a heating temperature of $160^{\circ} \mathrm{F}\left(71^{\circ} \mathrm{C}\right)$. A more specific objective was to develop an analytical method to calculate estimates of heating times.

## Background

The literature on heating times for lumber, timbers, and poles is mostly concerned with preparation for preservative treatment. MacLean $(1930,1932,1941)$ developed equations for estimating heating times in steam and showed experimentally that they worked well. The equations are for twodimensional heat flow, which means heating is from all four cross-sectional faces. Therefore, the equations are only applicable when these four faces all have access to the heating medium, except for wide boards where the width is much greater than the thickness. Gu and Garrahan (1984) also confirmed experimentally that MacLean's equations were valid for estimating heating times. Simpson (2001) further confirmed the validity of MacLean's equations and used them to develop a series of tables of heating times (to the center) of round cross sections ranging from 4 to 16 in. ( 102 to 406 mm ) in diameter (in 1-in. ( $25-\mathrm{mm}$ ) increments) and rectangular cross sections ranging from 0.75 in . ( 19 mm ) (variable width) to $16-$ by $16-\mathrm{in}$. ( $406-$ by $406-\mathrm{mm}$ ) square timbers. Variables in the tables were wood specific gravity, moisture content, initial temperature, heating temperature,
and target center temperature. Simpson (2001) also described MacLean's work and equations in detail.

MacLean's equations apply only to heating in a saturated steam environment. This means that little or no drying takes place during heating. In mathematical terms, it means a boundary condition where the surface immediately attains and holds the temperature of the heating medium. When the heating medium is air that is not saturated with steam, there is a wet-bulb depression, the relative humidity is less than $100 \%$, and drying occurs as water evaporates from the wood surface. When water evaporates from the wood surface, the latent heat of evaporation cools the surface. When this occurs, the surface is no longer at the dry-bulb temperature of the air. In other words, the wood is no longer being heated at the air temperature but at some lower temperature that depends on the rate of evaporation. The temperature difference between the surface and center is the driving force for heat conduction, and when that difference is reduced, heating time increases. The consequence is that when drying is occurring during heating, heating time is longer than if simultaneous drying were not occurring. A further consequence is that MacLean's equations no longer apply. They are derived from the solution to the differential equations of heat conduction, which requires the wood surface to immediately attain the temperature of the heating medium.

Simpson $(2001,2002)$ showed the effects of simultaneous drying on prolonging heating time for red maple, aspen, and slash pine. The slash pine study (Simpson 2002) went into more depth than the red maple and aspen study and clearly showed the increase in surface cooling as wet-bulb depression during heating was systematically increased. Heating times were shown to increase exponentially with wet-bulb depression increase. And when the wet-bulb depression was large enough that the wet-bulb temperature approached the target center temperature, the heating time increase became quite large. Under these conditions, the center temperature tended to remain at the wet-bulb temperature for an extended time period, which was probably related to the moisture content at the center, until the moisture content had
decreased to below the fiber saturation point when evaporation rate slowed. Simpson (2002) also measured surface temperature during heating and incorporated the variation in surface temperature with time during heating into a onedimensional (boards must be much wider than thick) finite difference solution to the heat conduction equation that included the boundary condition of changing surface temperature rather than the requirement of immediate attainment and retention of the dry-bulb temperature.

## Experimental Methods

Freshly sawn ponderosa pine and Douglas-fir boards and square timbers in the following sizes were supplied by mills: nominal 1 - by $6-$ and $2-$ by $6-\mathrm{in}$. ( $25-$ and 50 - by $152-\mathrm{mm}$ ) boards and nominal 4 - by $4-, 6-$ by $6-$, and $12-$ by $12-\mathrm{in}$. (102- by $102-, 152-$ by $152-$, and $305-$ by $305-\mathrm{mm}$ ) timbers. Actual sizes for the ponderosa pine were the same as nominal sizes. Actual sizes of Douglas-fir were $3 / 4$ by 5-5/8, 1$1 / 2$ by $5-5 / 8,3-1 / 2$ by $3-1 / 2$ in. ( 19 by 143,38 by 143,89 by 89 mm ) and approximately $5-3 / 4$ by $5-3 / 4$ and $11-3 / 4$ by 11$3 / 4$ in. ( 146 by 146 and 298 by 298 mm ). The nominal 6 by 6 and 12 by 12 Douglas-fir varied from the 5-3/4 or 11-3/4 in. up to the full 6 or 12 in . The material arrived in Madison in late winter. For several months, during which experimental runs were started on the ponderosa pine, the material was stored in the shade and wrapped with sheet plastic. By the time the ponderosa pine experimental runs were completed, warm weather had arrived and the Douglas-fir was stored under water spray as the experimental runs progressed. This difference in outdoor storage temperature created different initial center temperatures-ranging from as low as $32^{\circ} \mathrm{F}$ $\left(0^{\circ} \mathrm{C}\right)$ in the first 12- by 12-in. ponderosa pine run in March to as high as $80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$ for the last 1 - by 6 -in. Douglas-fir run in August. Heating time comparisons were thus complicated by these differing initial temperatures.

Two stacking methods were used. Most of the study was on stickered lumber or timbers, but several runs were made on solid-piled material. If a heat treating facility received solidpiled bundles of lumber or timber, it might be desirable to heat treat in the solid-piled configuration rather than unstacking, stickering for better access of all wood surfaces to the heating medium, and then restacking in solid-piled configuration.

All heating was done in a 1,500 -board-foot $\left(3.5-\mathrm{m}^{3}\right)$ experimental dry kiln at the target dry-bulb temperature of $160^{\circ} \mathrm{F}$. This is a temperature that strikes a balance between what most commercial dry kilns can easily reach and one that is high enough to result in reasonably short heating times. Exiting air velocity was approximately $600 \mathrm{ft} / \mathrm{min}(3 \mathrm{~m} / \mathrm{s})$.

Wet-bulb depression was chosen as another main experimental variable because of the previously discussed effect of simultaneous drying on heating time and the expected variation in the ability of commercial dry kilns to achieve low
wet-bulb depressions. For the stickered material, the target experimental wet-bulb depressions were $2^{\circ} \mathrm{F}, 6^{\circ} \mathrm{F}, 12^{\circ} \mathrm{F}$, $27^{\circ} \mathrm{F}$, and $45^{\circ} \mathrm{F}$ to $50^{\circ} \mathrm{F}\left(1.1^{\circ} \mathrm{C}, 3.3^{\circ} \mathrm{C}, 6.7^{\circ} \mathrm{C}, 15.0^{\circ} \mathrm{C}\right.$, and $25.0^{\circ} \mathrm{C}$ to $27.8^{\circ} \mathrm{C}$ ). Because of the limited amount of experimental material, only $2^{\circ} \mathrm{F}$ and $12^{\circ} \mathrm{F}$ were studied for solid-piled material. Five replicates of each size were included in each test run except for the 12 by 12 's where only four replicates were tested. Dummy boards and timbers were included in each test stack so that all test boards were surrounded on all sides by other boards or timbers and thus all test boards responded as boards or timbers within the stack and not as edge boards or timbers.

Internal temperatures were measured with thermocouples inserted to the geometrical center of each of the five or four replicate boards or timbers. Figure 1 shows a hole being drilled for a thermocouple in one of the 12 by 12 's. Figure 2 shows a round toothpick being inserted to seal the hole. Figure 3 shows a close-up of the thermocouple and toothpick. Surface temperatures were also measured on each of


Figure 1—Hole for thermocouple being drilled in 12 - by $12-\mathrm{in}$. timber.


Figure 2-Toothpick being driven into 12- by 12-in. timber to seal thermocouple.


Figure 3-Interior thermocouple inserted to center of boards and timbers.
the replicates so that the finite difference analysis (Simpson 2002) could be applied. Figure 4 shows a surface thermocouple in place. The surface thermocouples were held tightly to the board surfaces with plastic-headed (nonconducting) push pins. We then increased the contact with the surface by pressing down gently on the thermocouple junction. Figure 5 shows a stack of boards and timbers ready to be pushed into the kiln for heat treatment. The boards and timbers with the white markers are the ones fitted with center and surface thermocouples. The rest are dummies. Each test run thus consisted of all board and timber sizes of one species at one level of wet-bulb depression. Therefore, there was a total of five test runs of stickered material and two test runs of solidpiled material for each species, for a total of fourteen test runs. In each test run, the top layer of seven 1 - by 6 -in. boards and the bottom layer of seven 2 - by 6 -in. boards were weighed before heating, and then after the test, they were ovendried and reweighed for moisture content determination.


Figure 4-Surface thermocouple held in place by push pin.


Figure 5-Stack of boards and timbers ready to be pushed into the kiln for heating. Pieces with white tags have thermocouples.

With all thermocouples in place, the door to the already running and up-to-temperature kiln was opened, the kiln truck wheeled in, and the door closed as quickly as possible to minimize recovery time of the target kiln conditions. Recovery time to full target conditions was usually only 5 to 10 min . However, heating time of the nominal 1-in.-thick boards was so short (as short as 7 min in some cases) that full recovery was just barely made by the time the center had reached target temperature. This recovery time is probably longer in full-size commercial kilns and will be a factor in determining the time to be allowed for heating. Both center and surface thermocouple readings were processed by a Keithly (Cleveland, OH) Model 2700 Multimeter/Data Acquisition System and read to a computer file at intervals ranging from 0.5 min , to record the rapid heating of the nominal $1-\mathrm{in}$. boards especially early in their heating, to 10 min , for the last stages of the nominal 12 - by 12 - in. timbers. The center temperature at this point was taken as the initial temperature to be used later in the data analysis. Runs were terminated after the last of the slowest timbers (12 by 12 in .) reached the target center temperature of $133^{\circ} \mathrm{F}$.

## Analytical Methods

There are many possible combinations of material sizes, wetbulb depressions, and initial temperatures. No one experiment of practical scope could cover them all. Therefore, developing an analytical method to calculate estimated heating times for combinations not directly measured experimentally would be very useful. As previously discussed, MacLean's method (Simpson 2001) and a finite difference approach (Simpson 2002) are possibilities. However, they have limitations that suggest they will not be fully successful in describing the experimental data of this study. MacLean's approach requires full access of all four faces to the heating medium. This might not be achieved in the close edge-toedge contact of the stickered configuration or the solid-piled configuration used in this study. In practice, his approach will probably require some small level of gapping between adjacent boards or timbers. It might also be successfully applied to timbers, where heat flow into all four faces occurs, as well as to wide boards where heat flow is important only through the wide faces, that is, as one-dimensional heat flow. His approach can also be successfully applied to round cross sections (Simpson 2001) but cannot be applied at some as yet unknown level of simultaneous surface drying. The finite difference solution can be adapted to the situation where simultaneous drying occurs (Simpson 2002), but it's use depends either on measurements of the surface temperature with time or the as yet undeveloped knowledge of how the surface transfer coefficient $h$ (Simpson 2002) varies with temperature, wet-bulb depression, thickness, and species. And it requires extension to the two-dimensional solution to be applied to timbers.

The data of this study were analyzed using the two methods just mentioned, and the results of the analyses will be pre-
sented in the next section. However, with the exception of some applications of the finite difference method to boards, they were not very successful at predicting heating times. The detailed descriptions of how these two methods were applied will not be covered in this report but are available in Simpson (2001, 2002). However, the shortcomings of these two methods led to the development of a multiple regression analysis that was successful.

## Results

The results of this study are summarized in Table 1 for ponderosa pine and Table 2 for Douglas-fir. Average experimental heating times are given, as well as times predicted by MacLean's method, the finite difference method, and the multiple regression analysis. The average green moisture content was $112 \%$ for ponderosa pine and $97 \%$ for Douglas-fir.

## Experimental Heating Times

Experimental times to $133^{\circ} \mathrm{F}$ at the center were quite variable, ranging from 7 min for stickered nominal 1 - by 6-in. (actual thickness 0.75 in.) Douglas-fir boards to $2,889 \mathrm{~min}$ ( 48.2 h ) for solid-piled ponderosa pine 12 by 12 's. Size had a significant effect, with 12 by 12 's taking more than 100 times longer than 1 -in.-thick boards in some cases. Wet-bulb depression also affected experimental heating times, with heating time increasing as wet-bulb depression increased. This was expected because drying rate, and thus the rate of surface evaporation and cooling, increases as wet-bulb depression increases. The increase in heating time became especially large in the 1 - and 2 -in.-thick boards when the wet-bulb temperature in the kiln approached the target center temperature. When the wet-bulb depression was $27^{\circ} \mathrm{F}$, the wet-bulb temperature in the kiln was $133^{\circ} \mathrm{F}$ - the same as the target center temperature. As long as water is still evaporating from the wood, the limit on wood temperature will be approximately the wet-bulb temperature, and thus, the center temperature will approach $133^{\circ} \mathrm{F}$ slowly. If the wet-bulb temperature is above the target center temperature of $133^{\circ} \mathrm{F}$, as is the case for wet-bulb depressions of $2^{\circ} \mathrm{F}, 6^{\circ} \mathrm{F}$, and $12^{\circ} \mathrm{F}$, the center temperature has no trouble exceeding $133^{\circ} \mathrm{F}$. For example, for 1 -in.-thick ponderosa pine heated in a $12^{\circ} \mathrm{F}$ wet-bulb depression environment, heating time was 22.5 min . But when the wet-bulb depression was increased to $26.8^{\circ} \mathrm{F}\left(14.9^{\circ} \mathrm{C}\right)$, heating time increased to 188 min .

This effect is much more noticeable on the 1-and 2-in.-thick boards than on the larger dimension timbers. This is because, in drying thin material as opposed to thick material, surface evaporation is a more important mechanism than internal moisture movement, and thus the surface cooling with its slowing effect on the rate of internal heating is more pronounced. The extreme example of this was the 427-min

Table 1-Summary of experimental and calculated times to heat ponderosa pine boards and square timbers to a center temperature of $133^{\circ} \mathrm{F}$ in a heating environment of nominal $160^{\circ} \mathrm{F}$ dry-bulb temperature and various wet-bulb temperatures ${ }^{\text {a }}$

| Wet-bulb depr. ( ${ }^{\circ} \mathrm{F}$ ) | Nominal size (in.) | Experimental $T_{133}$ |  | $\begin{gathered} \text { MacLean } \\ T_{133} \\ (\mathrm{~min}) \end{gathered}$ | MacLean dev. (\%) | Finite diff. $T_{133}$ (min) | Finite diff. dev. (\%) | $\begin{aligned} & \text { Mult. reg. } \\ & T_{133} \\ & (\mathrm{~min}) \end{aligned}$ | Mult. reg. dev. (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Avg. (min) | $C V^{b}$ (\%) |  |  |  |  |  |  |
| Stickered |  |  |  |  |  |  |  |  |  |
| 2.5 | 12 by 12 | 1,006 | 15.5 | 964 | 4.2 | 1,759 | 74.9 | $974{ }^{\text {c }}$ | 3.2 |
|  | 6 by 6 | 299 | 17.7 | 237 | 20.7 | 432 | 44.5 | $308{ }^{\text {c }}$ | 3.0 |
|  | 4 by 4 | 153 | 8.9 | 105 | 31.3 | 189 | 23.5 | $143{ }^{\text {c }}$ | 6.5 |
|  | 2 by 6 | 42.7 | 13.1 | 42.0 | 1.6 | 45.8 | 7.3 | $43.4{ }^{\text {d }}$ | 1.6 |
|  | 1 by 6 | 17.0 | 8.1 | 12.2 | 28.2 | 15.3 | 10.0 | $16.7^{\text {d }}$ | 1.8 |
| 6.2 | 12 by 12 | 980 | 12.1 | 867 | 11.5 | 1,728 | 76.3 | $961{ }^{\text {c }}$ | 1.9 |
|  | 6 by 6 | 271 | 6.2 | 207 | 23.6 | 407 | 50.2 | $297{ }^{\text {c }}$ | 9.6 |
|  | 4 by 4 | 180 | 6.0 | 107 | 40.6 | 211 | 17.2 | $180^{\text {c }}$ | 0.0 |
|  | 2 by 6 | 52.7 | 2.4 | 38.2 | 27.5 | 46.0 | 12.7 | $49.5{ }^{\text {d }}$ | 6.1 |
|  | 1 by 6 | 16.0 | 5.9 | 10.8 | 32.5 | 14.8 | 7.5 | $16.6{ }^{\text {d }}$ | 3.8 |
| 12.0 | 12 by 12 | 1,428 | 8.2 | 1,004 | 29.7 | 1,840 | 28.9 | 1,432 ${ }^{\text {c }}$ | 0.3 |
|  | 6 by 6 | 420 | 28.3 | 229 | 45.5 | 514 | 22.4 | $383{ }^{\text {c }}$ | 8.8 |
|  | 4 by 4 | 207 | 17.3 | 109 | 47.3 | 248 | 19.8 | $207^{\text {c }}$ | 0.0 |
|  | 2 by 6 | 67.0 | 15.0 | 45.6 | 31.9 | 62.1 | 7.3 | $68.6{ }^{\text {d }}$ | 2.4 |
|  | 1 by 6 | 22.5 | 3.1 | 12.3 | 45.3 | 19.5 | 13.3 | $22.1{ }^{\text {d }}$ | 1.8 |
| 26.8 | 12 by 12 | 1,680 | 13.9 | 881 | 47.6 | 1,870 | 11.3 | 1,463 ${ }^{\text {e }}$ | 12.9 |
|  | 6 by 6 | 568 | 7.2 | 209 | 63.2 | 580 | 2.1 | $525^{\text {e }}$ | 7.6 |
|  | 4 by 4 | 256 | 19.0 | 95.1 | 62.9 | 219 | 14.5 | $303{ }^{\text {e }}$ | 18.4 |
|  | 2 by 6 | 137 | 12.5 | 39.9 | 70.9 | 83.8 | 38.8 | $139{ }^{\text {f }}$ | 1.5 |
|  | 1 by 6 | 188 | 45.2 | 9.6 | 94.9 | 37.3 | 80.2 | $171{ }^{\text {f }}$ | 9.0 |
| 47.5 | $12 \text { by } 12$ | 2,551 | 22.2 | 897 | 64.8 | 1,917 | 24.9 | 2,745 ${ }^{\text {e }}$ | 7.6 |
|  | $6 \text { by } 6$ | 953 | 38.1 | 221 | 76.8 | 583 | 38.8 | $1098{ }^{\text {e }}$ | 15.2 |
|  | 4 by 4 | 817 | 53.9 | 96.1 | 88.2 | 294 | 64.0 | $593{ }^{\text {e }}$ | 27.4 |
|  | 2 by 6 | 361 | 30.7 | 40.0 | 88.9 | 101 | 72.0 | $345{ }^{\text {f }}$ | 4.4 |
|  | 1 by 6 | 427 | 18.1 | 10.1 | 97.6 | 98.3 | 77.0 | $422{ }^{\text {f }}$ | 1.2 |
| Solid-piled |  |  |  |  |  |  |  |  |  |
| 2.8 | 12 by 12 | 1,736 | 26.4 | 871 | 49.8 | 2,590 | 49.2 | 2,007 ${ }^{\text {9 }}$ | 15.6 |
|  | 6 by 6 | 1,201 | 30.1 | 217 | 81.9 | 1366 | 13.7 | $1231{ }^{\text {g }}$ | 2.5 |
|  | 4 by 4 | 831 | 14.0 | 101 | 87.8 | 528 | 36.5 | $675{ }^{9}$ | 18.8 |
|  | 2 by 6 | 361 | 64.9 | 38.5 | 89.3 | 423 | 17.2 | $300^{\text {h }}$ | 16.9 |
|  | 1 by 6 | 166 | 70.3 | 9.9 | 94.0 | 128 | 22.9 | $141^{\text {h }}$ | 15.1 |
| 13.4 | 12 by 12 | 2,889 | 22.4 | 837 | 71.0 | 3,758 | 30.1 | 2,412 ${ }^{\text {g }}$ | 16.5 |
|  | 6 by 6 | 1,617 | 26.7 | 209 | 87.1 | 1522 | 5.9 | 1,441 ${ }^{\text {g }}$ | 10.9 |
|  | 4 by 4 | 710 | 48.1 | 92.9 | 86.9 | 674 | 5.1 | $810^{9}$ | 14.1 |
|  | 2 by 6 | 391 | 23.4 | 37.3 | 90.5 | 355 | 9.2 | $387^{\text {h }}$ | 1.0 |
|  | 1 by 6 | 201 | 22.7 | 9.7 | 95.2 | 197 | 2.0 | $195^{\text {h }}$ | 3.0 |

${ }^{\mathrm{a}}{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$; $1 \mathrm{in} .=25.4 \mathrm{~mm}$.
${ }^{\mathrm{b}} \mathrm{CV}$, coefficient of variation.
${ }^{\circ}$ Multiple regression is based on data for wet-bulb depressions of $2.5^{\circ} \mathrm{F}, 6.2^{\circ} \mathrm{F}$, and $12.0^{\circ} \mathrm{F}$; $4-$ by $4-, 6-$ by $6-$, and $12-$ by $12-\mathrm{in}$. stickered timbers; $R^{2}=0.967$.
${ }^{\mathrm{d}}$ Multiple regression is based on data for wet-bulb depressions of $2.5^{\circ} \mathrm{F}, 6.2^{\circ} \mathrm{F}$, and $12.0^{\circ} \mathrm{F}$; 1 - and 2-in.-thick stickered boards; $R^{2}=0.978$.
${ }^{\mathrm{e}}$ Multiple regression is based on data for wet-bulb depressions of $26.8^{\circ} \mathrm{F}$ and $47.5^{\circ} \mathrm{F}$; 4 - by $4-, 6$ - by $6-$, and 12 - by 12 -in. stickered timbers; $R^{2}=0.848$.
${ }^{f}$ Multiple regression is based on data for wet-bulb depressions of $26.8^{\circ} \mathrm{F}$ and $47.5^{\circ} \mathrm{F} ; 1$ - and 2 -in.-thick stickered boards; $R^{2}=0.739$.
${ }^{9}$ Multiple regression is based on data for wet-bulb depressions of $2.8^{\circ} \mathrm{F}$ and $13.4^{\circ} \mathrm{F}$; 4 - by $4-, 6-$ by $6-$, and 12 - by 12 -in. solid-piled timbers; $R^{2}=0.672$.
${ }^{\mathrm{h}}$ Multiple regression is based on data for wet-bulb depressions of $2.8^{\circ} \mathrm{F}$ and $13.4^{\circ} \mathrm{F} ; 1$ - and 2 -in.-thick solid-piled boards; $R^{2}=0.434$.

Table 2-Summary of experimental and calculated times to heat Douglas-fir boards and square timbers to a center temperature of $133^{\circ} \mathrm{F}$ in a heating environment of nominal $160^{\circ} \mathrm{F}$ dry-bulb temperature and various wet-bulb temperatures ${ }^{\text {a }}$

| Wet-bulb depr. ( ${ }^{\circ}$ F) | Nominal size <br> (in.) | Experimental $T_{133}$ |  | $\begin{gathered} \text { MacLean } \\ T_{133} \\ (\mathrm{~min}) \end{gathered}$ | MacLean dev. (\%) | Finite diff. $T_{133}$ (min) | Finite diff. dev. (\%) | $\begin{aligned} & \text { Mult. reg } \\ & T_{133} \\ & (\mathrm{~min}) \end{aligned}$ | Mult. reg dev. (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Avg. (min) | $C V^{\text {b }}$ (\%) |  |  |  |  |  |  |
| Stickered |  |  |  |  |  |  |  |  |  |
| 2.2 | 12 by 12 | 840 | 8.8 | 837 | 0.4 | 1,429 | 70.1 | $865^{\text {c }}$ | 3.0 |
|  | 6 by 6 | 209 | 8.9 | 198 | 5.3 | 348 | 66.5 | $203{ }^{\text {c }}$ | 2.9 |
|  | 4 by 4 | 78.1 | 12.5 | 70.9 | 9.2 | 125 | 60.1 | $82.0{ }^{\text {c }}$ | 5.0 |
|  | 2 by 6 | 21.4 | 21.3 | 22.6 | 5.6 | 24.8 | 15.9 | $21.1{ }^{\text {d }}$ | 1.4 |
|  | 1 by 6 | 7.3 | 22.2 | 6.4 | 12.3 | 7.5 | 2.7 | $7.3^{\text {d }}$ | 0.0 |
| 6.3 | 12 by 12 | 914 | 13.9 | 765 | 16.3 | 1,446 | 58.2 | $918^{\text {c }}$ | 0.4 |
|  | $6 \text { by } 6$ | 202 | 11.6 | 183 | 10.4 | 325 | 60.9 | $204{ }^{\text {c }}$ | 1.0 |
|  | 4 by 4 | 91.3 | 10.5 | 64.1 | 29.8 | 128 | 40.2 | $92.2{ }^{\text {c }}$ | 1.0 |
|  | 2 by 6 | 24.9 | 21.9 | 20.4 | 18.1 | 25.3 | 1.6 | $25.3{ }^{\text {d }}$ | 1.6 |
|  | 1 by 6 | 7.9 | 10.3 | 5.5 | 30.4 | 7.0 | 11.4 | $7.5{ }^{\text {d }}$ | 5.1 |
| 12.5 | 12 by 12 | 1,153 | 7.0 | 779 | 32.4 | 1,524 | 32.3 | 1,156 ${ }^{\text {c }}$ | 0.3 |
|  | 6 by 6 | 262 | 7.7 | 189 | 27.9 | 439 | 67.6 | $282{ }^{\text {c }}$ | 7.6 |
|  | 4 by 4 | 138 | 17.8 | 70.5 | 48.9 | 163 | 18.1 | $131{ }^{\text {c }}$ | 5.1 |
|  | 2 by 6 | 33.8 | 22.3 | 23.0 | 32.0 | 32.5 | 3.8 | $32.6{ }^{\text {d }}$ | 3.6 |
|  | 1 by 6 | 9.9 | 6.7 | 6.1 | 38.4 | 10.0 | 1.0 | $10.1{ }^{\text {d }}$ | 2.0 |
| 27.1 | 12 by 12 | 1,679 | 3.1 | 858 | 48.9 | 1,769 | 5.4 | 1,877 ${ }^{\text {e }}$ | 11.8 |
|  | 6 by 6 | 715 | 22.8 | 212 | 70.3 | 653 | 8.7 | $574{ }^{\text {e }}$ | 19.7 |
|  | 4 by 4 | 255 | 25.1 | 86.7 | 66.0 | 241 | 5.5 | $279{ }^{\text {e }}$ | 9.4 |
|  | 2 by 6 | 157 | 23.1 | 24.9 | 84.1 | 53.0 | 66.2 | $181{ }^{\text {f }}$ | 15.3 |
|  | 1 by 6 | 216 | 39.9 | 5.9 | 97.7 | 97.3 | 55.0 | $136{ }^{\text {f }}$ | 37.0 |
| 44.2 | 12 by 12 | 2,005 | 23.3 | 796 | 60.3 | 1,581 | 21.1 |  | 3.7 |
|  | 6 by 6 | 849 | 6.1 | 193 | 77.3 | 591 | 30.4 | $858{ }^{\text {e }}$ | 1.2 |
|  | 4 by 4 | 362 | 28.0 | 68.9 | 81.0 | 237 | 34.2 | $353{ }^{\text {e }}$ | 2.5 |
|  | 2 by 6 | 223 | 20.3 | 21.0 | 90.6 | 64.0 | 71.3 | $252{ }^{\text {f }}$ | 13.0 |
|  | 1 by 6 | 233 | 62.8 | 5.2 | 97.8 | 49.5 | 78.8 | $163{ }^{\text {f }}$ | 30.0 |
| Solid-piled |  |  |  |  |  |  |  |  |  |
| 1.5 | 12 by 12 | 1,931 | 13.5 | 817 | 57.7 | 2,661 | 37.8 | 1,973 ${ }^{\text {g }}$ | 2.2 |
|  | 6 by 6 | 977 | 9.3 | 197 | 79.8 | 1,245 | 27.4 | 1,096 ${ }^{9}$ | 12.2 |
|  | 4 by 4 | 432 | 27.2 | 70.2 | 83.8 | 514 | 19.0 | $364{ }^{9}$ | 15.7 |
|  | 2 by 6 | 137 | 46.9 | 21.7 | 84.2 | 99.3 | 27.5 | $123{ }^{\text {h }}$ | 10.2 |
|  | 1 by 6 | 103 | 45.2 | 5.4 | 94.8 | 107 | 3.9 | $89.9{ }^{\text {h }}$ | 12.7 |
| 13.8 | 12 by 12 | 2,437 | 28.6 | 806 | 66.9 | 3,085 | 26.6 | 2,500 ${ }^{\text {g }}$ | 2.6 |
|  | 6 by 6 | 1,847 | 25.7 | 200 | 89.2 | 2,813 | 52.3 | 1,368 ${ }^{\text {9 }}$ | 25.9 |
|  | 4 by 4 | 521 | 54.7 | 66.9 | 87.2 | 861 | 65.3 | $562{ }^{\text {g }}$ | 7.9 |
|  | 2 by 6 | 195 | 77.4 | 21.0 | 89.2 | 260 | 33.3 | $160^{\text {h }}$ | 17.9 |
|  | 1 by 6 | 143 | 69.1 | 5.2 | 96.4 | 189 | 32.2 | $121^{\text {h }}$ | 15.4 |

${ }^{\mathrm{a}_{\mathrm{o}}} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$; $1 \mathrm{in} .=25.4 \mathrm{~mm}$.
${ }^{\mathrm{b}} \mathrm{CV}$, coefficient of variation.
${ }^{\mathrm{C}}$ Multiple regression is based on data for wet-bulb depressions of $2.2^{\circ} \mathrm{F}, 6.3^{\circ} \mathrm{F}$, and $12.5^{\circ} \mathrm{F}$; 4- by $4-$ - $6-$ by $6-$, and 12 - by 12 -in. stickered timbers; $R^{2}=0.977$.
${ }^{\mathrm{d}}$ Multiple regression is based on data for wet-bulb depressions of $2.2^{\circ} \mathrm{F}, 6.3^{\circ} \mathrm{F}$, and $12.5^{\circ} \mathrm{F}$; 1 - and 2-in.-thick stickered boards; $R^{2}=0.925$.
Multiple regression is based on data for wet-bulb depressions of $27.1^{\circ} \mathrm{F}$ and $44.2^{\circ} \mathrm{F}$; 4 - by $4-$ - $6-$ by $6-$, and 12 - by $12-\mathrm{in}$.
stickered timbers; $R^{2}=0.935$.
${ }^{f}$ Multiple regression is based on data for wet-bulb depressions of $27.1^{\circ} \mathrm{F}$ and $44.2^{\circ} \mathrm{F}$; 1 - and 2-in.-thick stickered boards; $R^{2}=0.784$.
${ }^{9}$ Multiple regression is based on data for wet-bulb depressions of $1.5^{\circ} \mathrm{F}$ and $13.8^{\circ} \mathrm{F}$; 4 - by $4-, 6-$ by $6-$, and 12 - by 12 -in. solid-piled timbers; $R^{2}=0.784$.
${ }^{\mathrm{h}}$ Multiple regression is based on data for wet-bulb depressions of $1.5^{\circ} \mathrm{F}$ and $13.48^{\circ} \mathrm{F} ; 1$ - and 2-in.-thick solid-piled boards; $R^{2}=0.118$.
heating time of $1-\mathrm{in}$.-thick ponderosa pine at a wet-bulb depression of $47.4^{\circ} \mathrm{F}\left(26.3^{\circ} \mathrm{C}\right)$, which was substantially longer than what a 6 - by 6 -in. timber requires at wet-bulb depressions of either $2.5^{\circ} \mathrm{F}$ or $6.2^{\circ} \mathrm{F}\left(1.4^{\circ} \mathrm{C}\right.$ or $\left.3.4^{\circ} \mathrm{C}\right)$.

Solid piling had a large effect on increasing heating time compared with that of stickered material. Figure 6 shows the ratio of heating time for solid-piled material to the heating time for stickered material at the target wet-bulb depression of $2^{\circ} \mathrm{F}$. The ratio increased as size decreased and ranged from about 2 for 12- by 12-in. timbers to more than 14 for 1 - by 6-in. boards. Another observation on the comparison of solid-piled to stickered material was the variability among the replicates in heating times. For ponderosa pine, the average coefficient of variation of heating times was $17.1 \%$ for stickered material and $34.9 \%$ for solid-piled material. For Douglas-fir, they were $18.3 \%$ and $39.8 \%$. This is a logical outcome of the high degree of variability in how closely together wood pieces can be fit in solid stacking. In places where there was a gap, the kiln air could penetrate and thus warm the surface more than where adjacent pieces fitted
tightly together. Thus, in commercial practice, this high variability would cause complications in estimating heating times.

## MacLean Estimates of Heating Times

Estimates of heating times by MacLean's equations are also given in Tables 1 and 2. For stickered material heated at the target wet-bulb depression of $2^{\circ} \mathrm{F}$, the agreement between experimental and calculated times was quite good for Doug-las-fir, averaging about $5 \%$ for all sizes. The agreement for ponderosa pine was not as good, averaging about $17 \%$. There is no obvious reason for the difference between the two species. As discussed previously, MacLean's equation cannot account for surface cooling during heating, and this is reflected in the increase in deviation between experimental and calculated times as wet-bulb depression increased. The small difference in heating time calculations by MacLean's equations for different wet-bulb depression groups is due to the slight differences in dimensions, moisture content, and specific gravity between groups.


Figure 6-Ratio of heating times of solid-piled boards and timbers to stickered boards and timbers for (a) Douglas-fir, $1.5^{\circ} \mathrm{F} / 2.2^{\circ} \mathrm{F}\left(-16.9^{\circ} \mathrm{C} /-16.6^{\circ} \mathrm{C}\right)$ wet-bulb depression; (b) Douglas-fir, $12.5^{\circ} \mathrm{F} / 13.8^{\circ} \mathrm{F}$ $\left(-10.8^{\circ} \mathrm{C} /-10.1^{\circ} \mathrm{C}\right.$ ) wet-bulb depression; (c) ponderosa pine, $2.5^{\circ} \mathrm{F} / 2.8^{\circ} \mathrm{F}\left(-16.4^{\circ} \mathrm{C} /-16.2^{\circ} \mathrm{C}\right)$ wet-bulb depression; and (d) ponderosa pine, $12.0^{\circ} \mathrm{F} / 13.4^{\circ} \mathrm{F}\left(-11.1^{\circ} \mathrm{C} /-10.3^{\circ} \mathrm{C}\right)$ wet-bulb depression.

## Finite Difference Estimates of Heating Times

As developed to this point, the finite difference solution to the heat conduction equations is for one-dimensional heating only; that is, heat flow occurs only through two opposite faces and not through the edges. Thus, this solution only applies to boards much wider than they are thick. The effect of edge heating gradually declines as the width-to-thickness ratio increases (Fig. 7), and when it is above the 3 to 4 range, the one-dimensional solution is a good approximation.

The one-dimensional finite difference solution has two possible applications in this study. First, it might apply to the 1 - and 2-in.-thick boards because the width-to-thickness ratio is high. Second, it was possible that it would apply to the stickered timbers because of the way they were stacked. The edge-to-edge stacking might have resulted in the width of the whole stack (instead of the individual piece width) acting as the controlling width, thus making a large width-tothickness ratio even for the larger timbers. Examination of the data in Tables 1 and 2, however, shows that this was not the case. Deviation between experimental and calculated times was quite large for the timbers. However, agreement for the 1- and 2-in.-thick boards was good for the target wetbulb depressions of $2^{\circ} \mathrm{F}, 6^{\circ} \mathrm{F}$, and $12^{\circ} \mathrm{F}$, with average deviations of $9.7 \%$ and $6.1 \%$ for ponderosa pine and Douglas-fir, respectively. Deviation was large with target wet-bulb depressions of $27^{\circ} \mathrm{F}$ and $45^{\circ} \mathrm{F}$ for the same reasons discussed previously-wet-bulb temperature limits the possible


Figure 7-Effect of board width-to-thickness ratio on the ratio of the heating time at various widths to the heating time at infinite width, as calculated by MacLean's equation for two-dimensional heat flow (MacLean 1932, Simpson 2001).
internal temperature, which is a different mechanism than surface cooling. Application of the finite difference solution requires a functional relationship between time and surface temperature. The method for accomplishing this is detailed in Simpson (2002), and the results from this study are shown in Table 3.

## Multiple Regression

The MacLean method and the finite difference approach were not successful in providing a way to calculate heating times. They could not provide accurate estimates for the sizes, wet-bulb depressions, and initial temperatures used in this study and therefore are of no use in calculating estimates for other combinations of the three variables. It would have been desirable to base an analytical estimation method on the theory of heat conduction, but we do not yet have the capability to do that. Therefore, it seemed necessary to turn to the strictly empirical approach of multiple regression.

The following multiple regression model proved to have a good ability to predict heating time from size, wet-bulb depression, and initial temperature:

$$
\ln T_{133}=\ln a+b(\ln (x))^{n}+c \ln (\mathrm{wbd})+d \ln \left(T_{\mathrm{i}}\right)
$$

where $T_{133}$ is time for the center to reach $133^{\circ} \mathrm{F}$ (min); $x$, thickness of boards or cross-sectional dimension of timbers (in.); wbd, wet-bulb depression ( ${ }^{\circ} \mathrm{F}$ ); $T_{\mathrm{i}}$, initial wood temperature ( ${ }^{\circ} \mathrm{F}$ ); $a, b, c, d$, regression coefficients; $n$, either 1 or 2 .

Separate regressions were developed for the following groupings:

Ponderosa pine and Douglas-fir
1- to 2-in. boards, stickered, wet-bulb depression $<12^{\circ} \mathrm{F}$
4 - to 12 -in. timbers, stickered, wet-bulb depression $<12^{\circ} \mathrm{F}$
1 - to 2 -in. boards, stickered, $12^{\circ} \mathrm{F}<$ wet-bulb depression $<50^{\circ} \mathrm{F}$

4- to 12 -in. timbers, stickered, $12^{\circ} \mathrm{F}<$ wet-bulb depression $<50^{\circ} \mathrm{F}$

1- to 2-in. boards, solid-piled, wet-bulb depression $<14^{\circ} \mathrm{F}$ $\left(-10^{\circ} \mathrm{C}\right)$

4- to 12 -in. timbers, solid-piled, wet-bulb depression $<14^{\circ} \mathrm{F}$

In Equation (1), $n=1$ was best for all groupings except Douglas-fir timbers with wet-bulb depression $<12^{\circ} \mathrm{F}$, where $n=2$ worked best. The regression coefficients ( $a, b, c, d$ ) and coefficients of determination $\left(R^{2}\right)$ are shown in Table 4. The $R^{2}$ values for the groups of stickered material range from 0.739 to 0.984 and average 0.893 . The values for solid-piled material are not as high, ranging from 0.118 to 0.757 and

Table 3-Least squares coefficients for relationships between surface temperature and time $^{\text {a }}\left(\right.$ Surface temperature $\left.=a+b(\ln t)+c(\ln t)^{2}+d(\ln t)^{3}+e(\ln t)^{4}\right)$

|  | Coefficients |  |  |  |  | Standard error of estimate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (in.) | a | $b$ | c | $d$ | e |  |
| Ponderosa pine - wet-bulb depression $=2.5^{\circ} \mathrm{F}$ |  |  |  |  |  |  |
| 1 by 6 | 129 | 4.32 | -2.15 | 2.90 | -0.485 | 0.231 |
| 2 by 6 | 133 | 4.58 | -4.03 | 4.21 | -0.797 | 1.162 |
| Ponderosa pine - wet-bulb depression $=6.2^{\circ} \mathrm{F}$ |  |  |  |  |  |  |
| 1 by 6 | 119 | 20.43 | -16.08 | 10.13 | -1.957 | 0.955 |
| 2 by 6 | 110 | 41.20 | -21.07 | 5.78 | -0.611 | 2.177 |
| Ponderosa pine - wet-bulb depression $=12.0^{\circ} \mathrm{F}$ |  |  |  |  |  |  |
| 1 by 6 | 109 | 12.70 | 3.68 | -1.96 | 0.218 | 1.311 |
| 2 by 6 | 110 | 16.24 | 1.45 | -1.70 | 0.220 | 1.307 |
| Douglas-fir - wet-bulb depression $=2.2^{\circ} \mathrm{F}$ |  |  |  |  |  |  |
| 1 by 6 | 132 | 15.19 | -2.25 | 0.0164 | 0.0115 | 1.193 |
| 2 by 6 | 128 | 16.02 | -2.10 | -0.0454 | 0.0162 | 1.137 |
| Douglas-fir - wet-bulb depression $=6.3^{\circ} \mathrm{F}$ |  |  |  |  |  |  |
| 1 by 6 | 137 | 11.41 | -3.02 | 0.366 | -0.0149 | 0.919 |
| 2 by 6 | 135 | 11.23 | -2.77 | 0.320 | -0.0122 | 0.906 |
| Douglas-fir - wet-bulb depression $=12.5^{\circ} \mathrm{F}$ |  |  |  |  |  |  |
| 1 by 6 | 119 | 17.06 | -3.65 | 0.290 | 0.00406 | 1.067 |
| 2 by 6 | 121 | 16.92 | -4.79 | 0.689 | -0.0339 | 1.071 |

${ }^{\mathrm{a}^{\circ}} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.
averaging 0.495 , which is not surprising given the higher variability in the solid-piled heating times.

The ability of the multiple regression equations to predict experimental heating times is shown in Tables 1 and 2. The agreement was good for stickered boards and timbers when the target wet-bulb depression was $2^{\circ} \mathrm{F}, 6^{\circ} \mathrm{F}$, or $12^{\circ} \mathrm{F}$. The deviations between the experimental and calculated heating times ranged from $0 \%$ to $9.6 \%$ and averaged $3.4 \%$ for ponderosa pine and $5.4 \%$ for Douglas-fir. The predictions for stickered boards and timbers when the target wet-bulb depression was $27^{\circ} \mathrm{F}$ or $50^{\circ} \mathrm{F}$ was not very good, with deviations as high as $37 \%$. For solid-piled material, the deviations ranged from $1.0 \%$ to $25.9 \%$ and averaged $11.4 \%$ and $12.3 \%$ for ponderosa pine and Douglas-fir, respectively. However, the $R^{2}$ values for solid-piled material were low enough that the usefulness of the regression results is questionable.

## Predicted Heating Times

One of the main objectives of the study was to develop an analytical method to estimate heating times from some of the
variables involved, and the multiple regression equation provided such a method. The method worked well when the wet-bulb depression was less than or equal to about $12^{\circ} \mathrm{F}$ and the boards or timbers were stickered, so it seemed possible to use the multiple regression equation to generate heating time estimates for a series of sizes, wet-bulb depressions, and initial temperatures. Results can be seen in Figure 8 and Tables 5 to 8 . The estimates for ponderosa pine cover initial temperatures from $40^{\circ} \mathrm{F}\left(4.4^{\circ} \mathrm{C}\right.$ ) to $80^{\circ} \mathrm{F}$ (in $10^{\circ} \mathrm{F}$ increments). The estimates for Douglas-fir only cover initial temperatures of $60^{\circ} \mathrm{F}\left(15.6^{\circ} \mathrm{C}\right)$ to $80^{\circ} \mathrm{F}$. The reason for this difference was because of the timing of the experiments. The lumber and timbers were received in the winter. The ponderosa pine was tested first and therefore some was cold. By the time the Douglas-fir boards and timbers were tested, their temperatures ranged from about $58^{\circ} \mathrm{F}\left(14.4^{\circ} \mathrm{C}\right)$ to about $80^{\circ} \mathrm{F}$, and therefore, it is not valid to extend the multiple regression estimates beyond the range of the experimental data. The regression results for stickered material at target wet-bulb depressions of $27^{\circ} \mathrm{F}$ and $50^{\circ} \mathrm{F}$ and for solid-piled material were not considered reliable enough to generate estimated times of the type in Figure 8 and Tables 5 to 8.

Table 4-Coefficients for multiple regression equation for estimating time required to heat ponderosa pine and Douglas-fir boards and timbers to a $133^{\circ} \mathrm{F}$ center temperature in a $160^{\circ} \mathrm{F}$ heating medium ${ }^{\text {a }}$

$$
\left.\ln T_{133}=\ln a+b(\ln t)^{n}+c \ln w+d \ln T_{\mathrm{i}}\right)
$$

where $T_{133}$ is time for the center to reach $133^{\circ} \mathrm{F}, t$ thickness of boards or cross-sectional dimensions of timbers (in.), $w$ wetbulb depression (WBD) ( ${ }^{\circ} \mathrm{F}$ ), $T_{\mathrm{i}}$ initial wood temperature ( ${ }^{\circ} \mathrm{F}$ ), a,b,c,d are regression coefficients, $n=2$ for Douglas-fir timbers when WBD $<12^{\circ} \mathrm{F}, n=1$ for all others.

| Application | Coefficients |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In a | $b$ | c | $d$ | $R^{2}$ |
| Stickered |  |  |  |  |  |
| Ponderosa pine, 1- and 2-in. boards, WBD $<12{ }^{\circ} \mathrm{F}$ | 5.04 | 1.55 | 0.257 | 0.627 | 0.978 |
| Ponderosa pine, 4-, 6-, and 12-in. timbers, WBD $<12^{\circ} \mathrm{F}$ | 4.59 | 1.61 | 0.205 | -0.521 | 0.967 |
| Douglas-fir, 1- and 2-in. boards, WBD $<12^{\circ} \mathrm{F}$ | 8.04 | 1.63 | 0.265 | -1.35 | 0.925 |
| Douglas-fir, 4-, 6-, and 12-in. timbers, WBD $<12^{\circ} \mathrm{F}$ | 15.03 | 0.455 | 0.336 | -2.70 | 0.984 |
| Ponderosa pine, 1- and 2-in. boards, $12<\mathrm{WBD}<50^{\circ} \mathrm{F}$ | 0.322 | -0.294 | 1.57 | -0.0715 | 0.739 |
| Ponderosa pine, 4-, 6-, and 12-in. timbers, $12<$ WBD $<50^{\circ} \mathrm{F}$ | 4.94 | 1.25 | 0.919 | -0.944 | 0.848 |
| Douglas-fir, 1- and 2-in. boards, $12<\mathrm{WBD}<50^{\circ} \mathrm{F}$ | 30.43 | 0.538 | 2.95 | -8.35 | 0.769 |
| Douglas-fir, 4-, 6-, and 12-in. timbers, $12<$ WBD $<50^{\circ} \mathrm{F}$ | 18.64 | 1.33 | 2.03 | -5.13 | 0.935 |
| Solid-piled |  |  |  |  |  |
| Ponderosa pine, 1- and 2-in. boards, WBD $<14^{\circ} \mathrm{F}$ | 9.18 | 0.958 | 0.271 | -1.06 | 0.434 |
| Ponderosa pine, 4-, 6-, and 12-in. timbers, WBD $<14^{\circ} \mathrm{F}$ | 17.15 | 0.572 | 0.574 | 3.01 | 0.672 |
| Douglas-fir, 1- and 2-in. boards, WBD $<14^{\circ} \mathrm{F}$ | 13.31 | 0.415 | 0.211 | -2.05 | 0.118 |
| Douglas-fir, 4-, 6-, and 12-in. timbers, WBD $<14{ }^{\circ} \mathrm{F}$ | 154.3 | -0.588 | 1.67 | -35.1 | 0.757 |

${ }^{{ }^{\circ}}{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

The estimated heating times in Figure 8 and Tables 5 to 8 are average times and give a reasonable general estimate of the time required. However, since the objective of heat sterilization is to be reasonably certain all insects are killed, the average heating time is not really good enough. In any group of boards and timbers, there will always be some that require more than the average time. With this in mind, it seems necessary to determine the upper statistical confidence levels for the heating times. The equations for these are given in the Appendix. Tables 9 to 12 list the experimental heating times, the heating times predicted by multiple regression (Eq. (1)), and the $99 \%$ upper confidence levels for the experimental heating times for ponderosa pine boards and timbers and for Douglas-fir boards and timbers.

While Tables 5 to 8 and Figure 8 show the average heating times for a number of typical combinations of size, wet-bulb depression, and initial wood temperature, to be fully useful, this information should also be shown as upper confidence levels (Tables 13-16, Fig. 9). Figure 9 shows the average and upper confidence levels of heating times, and Tables 13 to 16 are similar to Tables 5 to 8 except that they show $99 \%$
upper confidence level heating times instead of average heating times.

## Conclusions

This study explored the effects of wood cross-sectional dimensions, wet-bulb depression, initial wood temperature, and stacking method on the time required to heat the center of ponderosa pine and Douglas-fir boards and timbers to $133^{\circ} \mathrm{F}$ when heated at $160^{\circ} \mathrm{F}$ dry-bulb temperature. As expected, heating time increased as size and wet-bulb depression increased and as initial temperature decreased. Also, heating time is significantly increased by solid-piling compared with stickered piling. This study also examined the possibility of predicting heating times using an analytical method. We determined that multiple regression can be used successfully to develop prediction equations to estimate heating time as a function of either board thickness or the cross-sectional dimension of square timbers, wet-bulb depression, and initial wood temperature as long as the wetbulb temperature in the heating chamber is greater than the target center temperature


Figure 8—Dependence of heating time on wet-bulb depression for (a) 1- to 2-in.-thick ponderosa pine boards, (b) 4- to 12-in. ponderosa pine timbers, (c) 3/4- to 1-1/2-in.-thick Douglas-fir boards, and (d) 3-1/2-by 3-1/2-in. Douglas-fir timbers (initial temperature for all experiments was $60^{\circ} \mathrm{F}$ ) ( ${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-\mathbf{3 2}\right.$ )/1.8; $\mathbf{1} \mathrm{in}$. $\mathbf{= 2 5 . 4} \mathbf{~ m m}$ ).

## References

Gu, L.B.; Garrahan, P. 1984. The temperature and moisture content in lumber during preheating and drying. Wood Science and Technology. 18: 121-135.

MacLean, J.D. 1930. Studies of heat conduction in wood. Pt 1. Results of steaming green round southern pine timbers. In: Proceedings of American Wood-Preservers' Association. 26: 197-217.

MacLean, J.D. 1932. Studies of heat conduction in wood. Pt II. Results of steaming green sawed southern pine timber.

In: Proceedings of American Wood-Preservers' Association. 28: 303-329.

MacLean, J.D. 1941. Thermal conductivity of wood. Heating, Piping, and Air Conditioning. 13: 380-391.

Simpson, W.T. 2001. Heating times for round and rectangular cross sections of wood in steam. Gen. Tech. Rep. FPL-GTR-130. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

Simpson, W.T. 2002. Effect of wet bulb depression on heat sterilization time of slash pine lumber. Res. Pap. FPL-RP604. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

Table 5-Summary of average heating times (at $160^{\circ} \mathrm{F}$ ) to $133^{\circ} \mathrm{F}$ for ponderosa pine boards estimated by multiple regression ${ }^{\text {a }}$

| Wet-bulb depression ( ${ }^{\circ} \mathrm{F}$ ) | Initial temperature ( ${ }^{\circ}$ F) | Heating time (min) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.00 in. thick | 1.25 in. thick | 1.50 in. thick | 1.75 in. thick | 2.00 in. thick |
| 2 | 40 | 18 | 26 | 34 | 43 | 53 |
| 4 | 40 | 22 | 31 | 41 | 52 | 64 |
| 6 | 40 | 24 | 34 | 45 | 58 | 71 |
| 8 | 40 | 26 | 37 | 49 | 62 | 76 |
| 10 | 40 | 28 | 39 | 52 | 66 | 81 |
| 12 | 40 | 29 | 41 | 54 | 69 | 85 |
| 2 | 50 | 16 | 22 | 30 | 38 | 46 |
| 4 | 50 | 19 | 27 | 36 | 45 | 55 |
| 6 | 50 | 21 | 30 | 39 | 50 | 62 |
| 8 | 50 | 23 | 32 | 42 | 54 | 66 |
| 10 | 50 | 24 | 34 | 45 | 57 | 70 |
| 12 | 50 | 25 | 36 | 47 | 60 | 74 |
| 2 | 60 | 14 | 20 | 27 | 34 | 41 |
| 4 | 60 | 17 | 24 | 32 | 40 | 49 |
| 6 | 60 | 19 | 27 | 35 | 45 | 55 |
| 8 | 60 | 20 | 29 | 38 | 48 | 59 |
| 10 | 60 | 21 | 30 | 40 | 51 | 63 |
| 12 | 60 | 22 | 32 | 42 | 53 | 66 |
| 2 | 70 | 13 | 18 | 24 | 31 | 38 |
| 4 | 70 | 15 | 22 | 29 | 37 | 45 |
| 6 | 70 | 17 | 24 | 32 | 41 | 50 |
| 8 | 70 | 18 | 26 | 34 | 44 | 54 |
| 10 | 70 | 19 | 27 | 36 | 46 | 57 |
| 12 | 70 | 20 | 29 | 38 | 48 | 60 |
| 2 | 80 | 12 | 17 | 22 | 28 | 35 |
| 4 | 80 | 14 | 20 | 26 | 34 | 41 |
| 6 | 80 | 16 | 22 | 29 | 37 | 46 |
| 8 | 80 | 17 | 24 | 32 | 40 | 49 |
| 10 | 80 | 18 | 25 | 33 | 43 | 52 |
| 12 | 80 | 19 | 26 | 35 | 45 | 55 |

[^0]Table 6—Summary of average heating times (at $160^{\circ} \mathrm{F}$ ) to $133^{\circ} \mathrm{F}$ for ponderosa pine square timbers estimated by multiple regression ${ }^{\text {a }}$

| Wet-bulb depression ( ${ }^{\circ}$ F) | Initial temperature ( ${ }^{\circ} \mathrm{F}$ ) | Heating time (min) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4 by 4 | 5 by 5 | 6 by 6 | 7 by 7 | 8 by 8 | 9 by 9 | 10 by 10 | 11 by 11 | 12 by 12 |
| 2 | 40 | 155 | 222 | 297 | 381 | 473 | 571 | 677 | 789 | 908 |
| 4 | 40 | 178 | 256 | 343 | 439 | 545 | 659 | 780 | 910 | 1,047 |
| 6 | 40 | 194 | 278 | 372 | 477 | 592 | 716 | 848 | 989 | 1,137 |
| 8 | 40 | 206 | 295 | 395 | 506 | 628 | 759 | 899 | 1,048 | 1,206 |
| 10 | 40 | 215 | 308 | 413 | 530 | 657 | 794 | 941 | 1,097 | 1,263 |
| 12 | 40 | 223 | 320 | 429 | 550 | 682 | 825 | 977 | 1,139 | 1,311 |
| 2 | 50 | 138 | 197 | 265 | 339 | 421 | 509 | 603 | 703 | 809 |
| 4 | 50 | 159 | 228 | 305 | 391 | 485 | 586 | 695 | 810 | 932 |
| 6 | 50 | 173 | 247 | 332 | 425 | 527 | 637 | 755 | 880 | 1,013 |
| 8 | 50 | 183 | 262 | 352 | 451 | 559 | 676 | 801 | 934 | 1,074 |
| 10 | 50 | 192 | 274 | 368 | 472 | 585 | 707 | 838 | 977 | 1,124 |
| 12 | 50 | 199 | 285 | 382 | 490 | 607 | 734 | 870 | 1,014 | 1,167 |
| 2 | 60 | 125 | 180 | 241 | 309 | 383 | 463 | 548 | 639 | 735 |
| 4 | 60 | 144 | 207 | 278 | 356 | 441 | 533 | 632 | 737 | 848 |
| 6 | 60 | 157 | 225 | 302 | 387 | 479 | 579 | 687 | 800 | 921 |
| 8 | 60 | 166 | 238 | 320 | 410 | 508 | 615 | 728 | 849 | 977 |
| 10 | 60 | 174 | 250 | 335 | 429 | 532 | 643 | 762 | 889 | 1,022 |
| 12 | 60 | 181 | 259 | 348 | 445 | 552 | 668 | 791 | 922 | 1,061 |
| 2 | 70 | 116 | 166 | 222 | 285 | 353 | 427 | 506 | 590 | 679 |
| 4 | 70 | 133 | 191 | 256 | 328 | 407 | 492 | 583 | 680 | 782 |
| 6 | 70 | 145 | 207 | 278 | 357 | 442 | 535 | 634 | 739 | 850 |
| 8 | 70 | 154 | 220 | 295 | 378 | 469 | 567 | 672 | 784 | 901 |
| 10 | 70 | 161 | 230 | 309 | 396 | 491 | 594 | 703 | 820 | 943 |
| 12 | 70 | 167 | 239 | 321 | 411 | 510 | 616 | 730 | 851 | 979 |
| 2 | 80 | 108 | 155 | 207 | 266 | 330 | 398 | 472 | 550 | 633 |
| 4 | 80 | 124 | 178 | 239 | 306 | 380 | 459 | 544 | 634 | 730 |
| 6 | 80 | 135 | 194 | 260 | 333 | 413 | 499 | 591 | 689 | 793 |
| 8 | 80 | 143 | 205 | 275 | 353 | 438 | 529 | 627 | 731 | 841 |
| 10 | 80 | 150 | 215 | 288 | 369 | 458 | 554 | 656 | 765 | 880 |
| 12 | 80 | 156 | 223 | 299 | 384 | 476 | 575 | 681 | 794 | 914 |

[^1]Table 7—Summary of average heating times (at $160^{\circ} \mathrm{F}$ ) to $133^{\circ} \mathrm{F}$ for Douglas-fir boards estimated by multiple regression ${ }^{\text {a }}$

| Wet-bulb <br> depression <br> $\left({ }^{\circ} \mathrm{F}\right)$ | Initial <br> temperature <br> $\left({ }^{\circ} \mathrm{F}\right)$ | Heating time (min) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.75 in. thick | 1.00 in. thick | 1.25 in. thick | 1.50 in. thick |  |
| 2 | 60 | 9 | 14 | 21 | 28 |
| 4 | 60 | 11 | 17 | 25 | 34 |
| 6 | 60 | 12 | 19 | 28 | 38 |
| 8 | 60 | 13 | 21 | 30 | 41 |
| 10 | 60 | 14 | 22 | 32 | 43 |
| 12 | 60 | 15 | 23 | 34 | 45 |
|  |  |  |  |  |  |
| 2 | 70 | 7 | 12 | 17 | 23 |
| 4 | 70 | 9 | 14 | 20 | 27 |
| 6 | 70 | 10 | 16 | 23 | 31 |
| 8 | 70 | 11 | 17 | 24 | 33 |
| 10 | 70 | 11 | 18 | 26 | 35 |
| 12 | 70 | 12 | 19 | 27 | 37 |
|  |  |  |  |  |  |
| 2 | 80 | 6 | 10 | 14 | 19 |
| 4 | 80 | 7 | 12 | 17 | 23 |
| 6 | 80 | 8 | 13 | 19 | 25 |
| 8 | 80 | 9 | 14 | 20 | 28 |
| 10 | 80 | 80 | 10 | 16 | 23 |

[^2]Table 8-Summary of average heating times (at $160^{\circ} \mathrm{F}$ ) to $133^{\circ} \mathrm{F}$ for Douglas-fir square timbers estimated by multiple regression ${ }^{\text {a }}$

| Wet-bulb depression $\left({ }^{\circ} \mathrm{F}\right)$ | Initial temperature ( ${ }^{\circ} \mathrm{F}$ ) | Heating time (min) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3.5 by 3.5 | 4 by 4 | 5 by 5 | 6 by 6 | 7 by 7 | 8 by 8 | 9 by 9 | 10 by 10 | 11 by 11 | 12 by 12 |
| 2 | 60 | 135 | 159 | 215 | 285 | 371 | 473 | 595 | 738 | 905 | 1,098 |
| 4 | 60 | 171 | 200 | 271 | 360 | 468 | 597 | 751 | 932 | 1,142 | 1,386 |
| 6 | 60 | 195 | 229 | 311 | 412 | 536 | 684 | 860 | 1,068 | 1,309 | 1,588 |
| 8 | 60 | 215 | 253 | 342 | 454 | 590 | 754 | 948 | 1,176 | 1,442 | 1,749 |
| 10 | 60 | 232 | 272 | 369 | 489 | 636 | 812 | 1,021 | 1,267 | 1,554 | 1,885 |
| 12 | 60 | 247 | 289 | 392 | 520 | 676 | 863 | 1,086 | 1,347 | 1,652 | 2,004 |
| 2 | 70 | 89 | 105 | 142 | 188 | 244 | 312 | 392 | 487 | 597 | 724 |
| 4 | 70 | 112 | 132 | 179 | 237 | 308 | 394 | 495 | 614 | 753 | 914 |
| 6 | 70 | 129 | 151 | 205 | 272 | 353 | 451 | 567 | 704 | 863 | 1,047 |
| 8 | 70 | 142 | 167 | 226 | 299 | 389 | 497 | 625 | 775 | 950 | 1,153 |
| 10 | 70 | 153 | 179 | 243 | 323 | 419 | 535 | 673 | 835 | 1,024 | 1,243 |
| 12 | 70 | 163 | 191 | 259 | 343 | 446 | 569 | 716 | 888 | 1,089 | 1,321 |
| 2 | 80 | 62 | 73 | 99 | 131 | 170 | 217 | 273 | 339 | 416 | 505 |
| 4 | 80 | 78 | 92 | 125 | 165 | 215 | 274 | 345 | 428 | 525 | 637 |
| 6 | 80 | 90 | 105 | 143 | 189 | 246 | 314 | 395 | 491 | 601 | 730 |
| 8 | 80 | 99 | 116 | 157 | 209 | 271 | 346 | 435 | 540 | 662 | 804 |
| 10 | 80 | 107 | 125 | 170 | 225 | 292 | 373 | 469 | 582 | 714 | 866 |
| 12 | 80 | 113 | 133 | 180 | 239 | 311 | 397 | 499 | 619 | 759 | 921 |

[^3]Table 9-Times for the center of ponderosa pine boards to reach $133^{\circ} \mathrm{F}$ : experimental times, times estimated by multiple regression (MR), and the upper $99 \%$ confidence limit on the experimental time ${ }^{\text {a }}$

| Exp. $T_{133}$ <br> $(\mathrm{~min})$ | Thickness <br> (in.) | Wet-bulb <br> depression <br> $\left({ }^{\circ} \mathrm{F}\right)$ | $T_{\mathrm{i}}$ <br> $\left({ }^{\circ} \mathrm{F}\right)$ | MR $T_{133}$ <br> $(\mathrm{~min})$ | $99 \% T_{133}$ <br> $(\mathrm{~min})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 19.1 | 1.2 | 3.9 | 76.3 | 17.9 | 22.6 |
| 15.4 | 1.1 | 3.9 | 75.0 | 15.7 | 19.9 |
| 16.4 | 1.1 | 3.9 | 75.3 | 16.8 | 21.3 |
| 17.2 | 1.1 | 3.9 | 74.0 | 17.0 | 21.5 |
| 16.9 | 1.1 | 3.9 | 72.3 | 16.3 | 20.8 |
| 48.6 | 2.0 | 2.8 | 66.5 | 42.0 | 53.3 |
| 48.6 | 2.0 | 2.8 | 65.2 | 44.2 | 56.2 |
| 41.2 | 2.1 | 2.8 | 66.4 | 44.7 | 56.8 |
| 38.6 | 2.1 | 2.8 | 66.7 | 45.3 | 57.5 |
| 36.7 | 2.0 | 2.8 | 66.9 | 40.6 | 51.5 |
| 16.4 | 1.0 | 6.0 | 76.2 | 17.1 | 21.6 |
| 16.7 | 1.0 | 6.0 | 76.4 | 16.1 | 20.3 |
| 15.4 | 1.0 | 6.0 | 76.4 | 15.9 | 20.0 |
| 16.8 | 1.0 | 6.0 | 74.5 | 17.4 | 21.9 |
| 14.6 | 1.0 | 6.0 | 76.1 | 16.4 | 20.7 |
| 53.3 | 1.8 | 6.1 | 64.4 | 46.3 | 58.3 |
| 53.9 | 1.9 | 6.1 | 66.4 | 49.3 | 62.3 |
| 51.8 | 2.1 | 6.1 | 64.6 | 55.1 | 69.6 |
| 53.4 | 1.9 | 6.1 | 65.4 | 48.3 | 60.8 |
| 50.9 | 2.0 | 6.1 | 69.3 | 48.8 | 62.3 |
| 23.7 | 1.1 | 11.1 | 70.8 | 22.3 | 28.2 |
| 22.0 | 1.0 | 11.1 | 68.8 | 20.8 | 26.5 |
| 22.3 | 1.1 | 11.1 | 69.5 | 22.2 | 28.2 |
| 22.5 | 1.1 | 11.1 | 73.1 | 22.8 | 28.9 |
| 22.0 | 1.1 | 11.1 | 75.1 | 22.4 | 28.6 |
| 70.7 | 2.1 | 11.8 | 58.9 | 69.7 | 88.6 |
| 59.7 | 2.1 | 11.8 | 55.4 | 73.5 | 94.9 |
| 81.4 | 2.2 | 11.8 | 55.5 | 77.8 | 100.2 |
| 66.1 | 1.9 | 11.8 | 62.1 | 61.0 | 77.3 |
| 56.5 | 2.0 | 11.8 | 67.3 | 62.2 | 80.5 |

${ }^{\mathrm{a}^{\circ}} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

Table 10-Times for the center of ponderosa pine timbers to reach $133^{\circ} \mathrm{F}$ : experimental times, times estimated by multiple regression (MR), and the upper $99 \%$ confidence limit on the experimental time ${ }^{\text {a }}$

| $\begin{aligned} & \text { Exp. } T_{133} \\ & (\mathrm{~min}) \end{aligned}$ | Thickness (in.) | Wet-bulb depression ( ${ }^{\circ} \mathrm{F}$ ) | $\begin{gathered} T_{i} \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$ | $\begin{gathered} \text { MR } T_{133} \\ (\mathrm{~min}) \end{gathered}$ | $\begin{gathered} 99 \% T_{133} \\ (\mathrm{~min}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 132 | 4.2 | 2.1 | 49.6 | 153 | 223 |
| 166 | 4.1 | 2.1 | 43.1 | 159 | 232 |
| 159 | 4.2 | 2.1 | 54.0 | 145 | 211 |
| 160 | 4.2 | 2.1 | 60.8 | 136 | 199 |
| 147 | 4.2 | 2.1 | 66.5 | 130 | 191 |
| 346 | 5.9 | 2.0 | 32.2 | 327 | 479 |
| 328 | 6.1 | 2.0 | 33.7 | 329 | 482 |
| 329 | 6.1 | 2.0 | 35.1 | 322 | 471 |
| 277 | 5.9 | 2.0 | 36.8 | 304 | 444 |
| 216 | 6.1 | 2.0 | 50.7 | 266 | 387 |
| 1,061 | 12.1 | 1.7 | 34.7 | 956 | 1,404 |
| 952 | 12.0 | 1.7 | 34.2 | 955 | 1,402 |
| 823 | 11.9 | 1.7 | 31.3 | 992 | 1,459 |
| 1,190 | 11.9 | 1.7 | 31.4 | 991 | 1,457 |
| 177 | 4.2 | 6.4 | 42.5 | 205 | 299 |
| 185 | 4.2 | 6.4 | 54.7 | 180 | 260 |
| 185 | 4.1 | 6.4 | 52.1 | 180 | 261 |
| 188 | 4.2 | 6.4 | 59.4 | 174 | 253 |
| 162 | 4.2 | 6.4 | 67.5 | 161 | 235 |
| 254 | 5.9 | 6.4 | 62.8 | 289 | 419 |
| 270 | 6.1 | 6.4 | 61.7 | 312 | 452 |
| 285 | 5.9 | 6.4 | 60.6 | 297 | 430 |
| 256 | 6.1 | 6.4 | 63.2 | 308 | 447 |
| 292 | 5.9 | 6.4 | 67.3 | 279 | 406 |
| 1,092 | 12.1 | 6.2 | 50.7 | 1,024 | 1,498 |
| 1,064 | 12.0 | 6.2 | 53.0 | 986 | 1,444 |
| 924 | 11.9 | 6.2 | 58.0 | 936 | 1,378 |
| 840 | 12.0 | 6.2 | 63.6 | 896 | 1,328 |
| 238 | 4.2 | 12.2 | 58.0 | 198 | 287 |
| 204 | 4.2 | 12.2 | 44.4 | 226 | 331 |
| 242 | 4.1 | 12.2 | 45.3 | 217 | 318 |
| 196 | 4.2 | 12.2 | 48.4 | 216 | 315 |
| 154 | 4.1 | 12.2 | 65.9 | 179 | 261 |
| 356 | 5.9 | 12.4 | 54.9 | 355 | 514 |
| 322 | 6.1 | 12.4 | 41.5 | 440 | 641 |
| 551 | 6.0 | 12.4 | 44.9 | 404 | 586 |
| 545 | 5.9 | 12.4 | 54.0 | 361 | 523 |
| 326 | 6.1 | 12.4 | 60.5 | 357 | 518 |
| 1,589 | 12.0 | 12.6 | 33.9 | 1,442 | 2,123 |
| 1,375 | 12.1 | 12.6 | 35.1 | 1,428 | 2,099 |
| 1,430 | 12.1 | 12.6 | 35.4 | 1,428 | 2,099 |
| 1,316 | 11.9 | 12.6 | 34.1 | 1,427 | 2,100 |

Table 11-Times for the center of Douglas-fir boards to reach $133^{\circ} \mathrm{F}$ : experimental times, times estimated by multiple regression (MR), and the upper $99 \%$ confidence limit on the experimental time ${ }^{\text {a }}$

| Exp. $T_{133}$ <br> (min) | Thickness <br> (in.) | Wet-bulb <br> depression <br> $\left({ }^{\circ} \mathrm{F}\right)$ | $T_{i}$ <br> $\left({ }^{\circ} \mathrm{F}\right)$ | MR $T_{133}$ <br> $(\mathrm{~min})$ | $99 \% T_{133}$ <br> $(\mathrm{~min})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8.5 | 0.76 | 4.4 | 82.5 | 7.4 | 11.8 |
| 4.7 | 0.75 | 4.4 | 82.9 | 7.2 | 11.6 |
| 8.0 | 0.76 | 4.4 | 82.1 | 7.4 | 11.8 |
| 8.6 | 0.74 | 4.4 | 82.2 | 7.2 | 11.5 |
| 6.9 | 0.75 | 4.4 | 81.9 | 7.3 | 11.7 |
| 26.7 | 1.53 | 2.2 | 78.8 | 20.7 | 33.7 |
| 17.5 | 1.54 | 2.2 | 77.3 | 21.5 | 35.2 |
| 18.2 | 1.54 | 2.2 | 77.9 | 21.2 | 34.7 |
| 26.0 | 1.53 | 2.2 | 77.5 | 21.1 | 34.7 |
| 18.5 | 1.52 | 2.2 | 78.7 | 20.4 | 33.3 |
| 7.3 | 0.75 | 6.1 | 86.1 | 7.4 | 12.0 |
| 8.5 | 0.76 | 6.1 | 85.8 | 7.6 | 12.2 |
| 7.8 | 0.75 | 6.1 | 85.6 | 7.6 | 12.2 |
| 6.9 | 0.75 | 6.1 | 85.1 | 7.6 | 12.3 |
| 8.9 | 0.75 | 6.1 | 85.8 | 7.4 | 12.0 |
| 21.3 | 1.51 | 6.6 | 84.4 | 24.5 | 40.0 |
| 22.3 | 1.50 | 6.6 | 83.2 | 24.8 | 40.0 |
| 32.4 | 1.52 | 6.6 | 82.9 | 25.4 | 41.0 |
| 29.0 | 1.52 | 6.6 | 82.7 | 25.6 | 41.2 |
| 19.7 | 1.53 | 6.6 | 83.8 | 25.4 | 41.2 |
| 10.7 | 0.75 | 12.4 | 80.8 | 9.8 | 15.7 |
| 10.5 | 0.76 | 12.4 | 79.9 | 10.3 | 16.6 |
| 9.5 | 0.75 | 12.4 | 79.3 | 10.0 | 16.2 |
| 9.4 | 0.75 | 12.4 | 79.0 | 10.1 | 16.5 |
| 9.3 | 0.75 | 12.4 | 77.5 | 10.4 | 17.2 |
| 41.9 | 1.53 | 12.0 | 78.7 | 32.4 | 52.5 |
| 29.3 | 1.51 | 12.0 | 78.8 | 31.7 | 51.3 |
| 29.5 | 1.53 | 12.0 | 78.7 | 32.4 | 52.5 |
| 42.1 | 1.53 | 12.0 | 77.0 | 33.3 | 54.2 |
| 26.4 | 1.52 | 12.0 | 79.2 | 31.8 | 51.4 |
|  |  |  |  |  |  |

${ }^{a_{0}} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1$ in. $=25.4 \mathrm{~mm}$.

Table 12-Times for the center of Douglas-fir timbers to reach $133^{\circ} \mathrm{F}$ : experimental times, times estimated by multiple regression (MR), and the upper 99\% confidence limit on the experimental time ${ }^{\text {a }}$

| $\begin{aligned} & \text { Exp. } T_{133} \\ & (\mathrm{~min}) \end{aligned}$ | Thickness (in.) | Wet-bulb depression $\left({ }^{\circ} \mathrm{F}\right)$ | $\begin{gathered} T_{\mathrm{i}} \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$ | MR $T_{133}$ (min) | $\begin{aligned} & 99 \% T_{133} \\ & (\mathrm{~min}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 95 | 3.6 | 1.5 | 72.6 | 75 | 105 |
| 72 | 3.6 | 1.5 | 71.7 | 78 | 108 |
| 77 | 3.6 | 1.5 | 69.3 | 86 | 118 |
| 76 | 3.6 | 1.5 | 69.3 | 86 | 118 |
| 70 | 3.6 | 1.5 | 71.5 | 79 | 109 |
| 217 | 5.8 | 1.5 | 66.6 | 184 | 258 |
| 223 | 5.9 | 1.5 | 63.8 | 212 | 301 |
| 226 | 5.9 | 1.5 | 63.4 | 214 | 304 |
| 194 | 5.9 | 1.5 | 64.5 | 204 | 288 |
| 185 | 5.8 | 1.5 | 66.8 | 183 | 255 |
| 745 | 11.9 | 1.4 | 64.4 | 785 | 1,145 |
| 902 | 12.0 | 1.4 | 63.9 | 816 | 1,193 |
| 819 | 12.0 | 1.4 | 61.0 | 925 | 1,375 |
| 896 | 12.1 | 1.4 | 62.7 | 879 | 1,294 |
| 88 | 3.5 | 6.4 | 81.0 | 89 | 123 |
| 106 | 3.5 | 6.4 | 79.3 | 94 | 129 |
| 96 | 3.5 | 6.4 | 79.3 | 94 | 129 |
| 84 | 3.5 | 6.4 | 79.7 | 93 | 128 |
| 83 | 3.5 | 6.4 | 82.7 | 84 | 117 |
| 186 | 5.9 | 6.1 | 77.5 | 201 | 279 |
| 243 | 5.8 | 6.1 | 76.3 | 204 | 283 |
| 199 | 5.8 | 6.1 | 76.9 | 200 | 277 |
| 189 | 5.8 | 6.1 | 76.4 | 207 | 287 |
| 193 | 5.8 | 6.1 | 78.0 | 191 | 265 |
| 847 | 11.7 | 6.3 | 73.3 | 889 | 1,280 |
| 823 | 11.8 | 6.3 | 72.8 | 927 | 1,338 |
| 1,101 | 11.8 | 6.3 | 72.9 | 908 | 1,308 |
| 887 | 11.8 | 6.3 | 73.6 | 884 | 1,273 |
| 136 | 3.6 | 12.2 | 77.4 | 127 | 176 |
| 199 | 3.6 | 12.2 | 75.5 | 136 | 189 |
| 144 | 3.6 | 12.2 | 76.4 | 132 | 183 |
| 110 | 3.6 | 12.2 | 76.7 | 130 | 180 |
| 102 | 3.6 | 12.2 | 78.9 | 121 | 166 |
| 241 | 5.8 | 12.3 | 73.9 | 286 | 402 |
| 261 | 5.8 | 12.3 | 74.5 | 275 | 386 |
| 252 | 5.8 | 12.3 | 74.1 | 279 | 392 |
| 264 | 5.7 | 12.3 | 74.2 | 271 | 380 |
| 294 | 5.8 | 12.3 | 74.5 | 277 | 389 |
| 1,183 | 11.7 | 13.4 | 74.9 | 1,083 | 1,573 |
| 1,033 | 12.1 | 13.4 | 74.4 | 1,191 | 1,738 |
| 1,200 | 11.8 | 13.4 | 74.7 | 1,111 | 1,615 |
| 1,195 | 12.0 | 13.4 | 74.5 | 1,159 | 1,689 |

${ }^{{ }^{\circ}}{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

Table 13-Summary of $99 \%$ upper confidence level of heating times (at $160^{\circ} \mathrm{F}$ ) to $133^{\circ} \mathrm{F}$ for ponderosa pine boards estimated by multiple regression ${ }^{\text {a }}$

| Wet-bulb depression ( ${ }^{\circ} \mathrm{F}$ ) | Initial temperature ( ${ }^{\circ} \mathrm{F}$ ) | Heating time (min) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.00 in. thick | 1.25 in. thick | 1.50 in. thick | 1.75 in. thick | 2.00 in. thick |
| 2 | 40 | 39 | 53 | 67 | 82 | 98 |
| 4 | 40 | 45 | 60 | 76 | 93 | 112 |
| 6 | 40 | 48 | 65 | 83 | 101 | 121 |
| 8 | 40 | 51 | 69 | 87 | 107 | 128 |
| 10 | 40 | 54 | 72 | 92 | 112 | 134 |
| 12 | 40 | 56 | 75 | 95 | 117 | 139 |
| 2 | 50 | 28 | 37 | 47 | 58 | 70 |
| 4 | 50 | 31 | 42 | 54 | 66 | 80 |
| 6 | 50 | 34 | 46 | 59 | 72 | 87 |
| 8 | 50 | 36 | 49 | 62 | 77 | 92 |
| 10 | 50 | 38 | 51 | 65 | 80 | 97 |
| 12 | 50 | 39 | 53 | 68 | 84 | 101 |
| 2 | 60 | 21 | 28 | 36 | 45 | 55 |
| 4 | 60 | 24 | 33 | 42 | 52 | 63 |
| 6 | 60 | 26 | 35 | 46 | 57 | 70 |
| 8 | 60 | 28 | 38 | 49 | 61 | 75 |
| 10 | 60 | 29 | 40 | 52 | 65 | 79 |
| 12 | 60 | 30 | 42 | 54 | 68 | 83 |
| 2 | 70 | 17 | 24 | 31 | 39 | 48 |
| 4 | 70 | 20 | 27 | 36 | 46 | 57 |
| 6 | 70 | 22 | 30 | 40 | 51 | 64 |
| 8 | 70 | 23 | 33 | 43 | 56 | 70 |
| 10 | 70 | 25 | 35 | 46 | 59 | 74 |
| 12 | 70 | 26 | 36 | 49 | 63 | 78 |
| 2 | 80 | 15 | 21 | 29 | 37 | 46 |
| 4 | 80 | 18 | 26 | 35 | 45 | 56 |
| 6 | 80 | 20 | 29 | 39 | 51 | 64 |
| 8 | 80 | 22 | 31 | 42 | 55 | 70 |
| 10 | 80 | 23 | 33 | 45 | 59 | 75 |
| 12 | 80 | 24 | 35 | 48 | 63 | 79 |

[^4]Table 14 -Summary of $99 \%$ upper confidence levels of heating times (at $160^{\circ} \mathrm{F}$ ) to $133^{\circ} \mathrm{F}$ for ponderosa pine square timbers estimated by multiple regression ${ }^{\text {a }}$

| Wet-bulb depression $\left({ }^{\circ} \mathrm{F}\right)$ | Initial temperature $\left({ }^{\circ} \mathrm{F}\right)$ | Heating time (min) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4 by 4 | 5 by 5 | 6 by 6 | 7 by 7 | 8 by 8 | 9 by 9 | 10 by 10 | 11 by 11 | 12 by 12 |
| 2 | 40 | 225 | 321 | 429 | 550 | 682 | 825 | 980 | 1,145 | 1,321 |
| 4 | 40 | 259 | 368 | 492 | 630 | 782 | 946 | 1,123 | 1,312 | 1,512 |
| 6 | 40 | 282 | 401 | 535 | 685 | 850 | 1,028 | 1,220 | 1,425 | 1,643 |
| 8 | 40 | 299 | 426 | 569 | 728 | 903 | 1,092 | 1,296 | 1,514 | 1,745 |
| 10 | 40 | 314 | 447 | 597 | 764 | 947 | 1,146 | 1,359 | 1,587 | 1,830 |
| 12 | 40 | 327 | 465 | 621 | 795 | 986 | 1,192 | 1,414 | 1,651 | 1,904 |
| 2 | 50 | 200 | 285 | 382 | 490 | 609 | 738 | 878 | 1,026 | 1,185 |
| 4 | 50 | 229 | 326 | 437 | 561 | 697 | 844 | 1,003 | 1,173 | 1,354 |
| 6 | 50 | 249 | 354 | 475 | 609 | 756 | 916 | 1,088 | 1,272 | 1,468 |
| 8 | 50 | 264 | 376 | 504 | 646 | 802 | 972 | 1,155 | 1,350 | 1,558 |
| 10 | 50 | 277 | 395 | 529 | 678 | 841 | 1,019 | 1,210 | 1,415 | 1,633 |
| 12 | 50 | 288 | 411 | 550 | 705 | 875 | 1,059 | 1,258 | 1,471 | 1,697 |
| 2 | 60 | 182 | 261 | 350 | 450 | 559 | 679 | 807 | 945 | 1,091 |
| 4 | 60 | 208 | 298 | 400 | 513 | 638 | 774 | 921 | 1,078 | 1245 |
| 6 | 60 | 226 | 323 | 433 | 557 | 692 | 839 | 998 | 1,168 | 1,349 |
| 8 | 60 | 240 | 343 | 460 | 590 | 734 | 890 | 1,058 | 1,238 | 1,430 |
| 10 | 60 | 251 | 359 | 482 | 618 | 769 | 932 | 1,108 | 1,297 | 1,497 |
| 12 | 60 | 261 | 373 | 501 | 643 | 799 | 969 | 1,151 | 1,347 | 1,555 |
| 2 | 70 | 169 | 243 | 326 | 420 | 523 | 634 | 755 | 884 | 1,022 |
| 4 | 70 | 193 | 277 | 372 | 479 | 596 | 723 | 860 | 1,008 | 1,164 |
| 6 | 70 | 210 | 300 | 403 | 518 | 645 | 783 | 932 | 1,091 | 1,260 |
| 8 | 70 | 222 | 318 | 427 | 549 | 684 | 830 | 987 | 1,156 | 1,335 |
| 10 | 70 | 233 | 333 | 448 | 575 | 716 | 868 | 1,033 | 1,210 | 1,398 |
| 12 | 70 | 242 | 346 | 465 | 598 | 743 | 902 | 1,073 | 1,256 | 1,451 |
| 2 | 80 | 160 | 229 | 308 | 397 | 494 | 600 | 715 | 837 | 968 |
| 4 | 80 | 182 | 261 | 351 | 452 | 563 | 683 | 814 | 953 | 1,102 |
| 6 | 80 | 197 | 282 | 380 | 489 | 609 | 739 | 880 | 1,031 | 1,192 |
| 8 | 80 | 209 | 299 | 403 | 518 | 645 | 783 | 932 | 1,092 | 1,262 |
| 10 | 80 | 219 | 313 | 421 | 542 | 675 | 819 | 975 | 1,143 | 1,321 |
| 12 | 80 | 227 | 325 | 438 | 563 | 701 | 851 | 1,013 | 1,186 | 1,371 |

${ }^{\mathrm{a}}{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

Table 15-Summary of 99\% upper confidence levels of heating times (at $160^{\circ} \mathrm{F}$ ) to $133^{\circ} \mathrm{F}$ for Douglas-fir boards estimated by multiple regression ${ }^{\text {a }}$

| Wet-bulb <br> depression <br> $\left({ }^{\circ} \mathrm{F}\right)$ | Initial <br> temperature <br> $\left({ }^{\circ} \mathrm{F}\right)$ | Heating time (min) |  |  |  |  | 0.76 in. thick | 1.00 in. thick | 1.25 in. thick | 1.50 in. thick |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 60 | 25 | 37 | 53 | 70 |  |  |  |  |  |
| 4 | 60 | 29 | 44 | 62 | 82 |  |  |  |  |  |
| 6 | 60 | 32 | 49 | 68 | 91 |  |  |  |  |  |
| 8 | 60 | 34 | 52 | 74 | 98 |  |  |  |  |  |
| 10 | 60 | 36 | 55 | 78 | 104 |  |  |  |  |  |
| 12 | 60 | 38 | 58 | 82 | 109 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 2 | 70 | 15 | 22 | 32 | 42 |  |  |  |  |  |
| 4 | 70 | 17 | 26 | 37 | 49 |  |  |  |  |  |
| 6 | 70 | 19 | 29 | 41 | 55 |  |  |  |  |  |
| 8 | 70 | 20 | 31 | 44 | 59 |  |  |  |  |  |
| 10 | 70 | 22 | 33 | 47 | 63 |  |  |  |  |  |
| 12 | 70 | 23 | 35 | 49 | 66 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 2 | 80 | 10 | 16 | 23 | 31 |  |  |  |  |  |
| 4 | 80 | 12 | 19 | 27 | 37 |  |  |  |  |  |
| 6 | 80 | 13 | 21 | 30 | 41 |  |  |  |  |  |
| 8 | 80 | 15 | 23 | 32 | 44 |  |  |  |  |  |
| 10 | 80 | 15 | 24 | 35 | 47 |  |  |  |  |  |
| 12 | 80 | 16 | 25 | 36 | 49 |  |  |  |  |  |

${ }^{{ }^{\circ}}{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

Table 16-Summary of $99 \%$ upper confidence levels of heating times (at $160^{\circ} \mathrm{F}$ ) to $133^{\circ} \mathrm{F}$ for Douglas-fir square timbers estimated by multiple regression ${ }^{\text {a }}$

| Wet-bulb depression ( ${ }^{\circ} \mathrm{F}$ ) | Initial temperature ( ${ }^{\circ} \mathrm{F}$ ) | Heating time (min) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3.5 by 3.5 | 4 by 4 | 5 by 5 | 6 by 6 | 7 by 7 | 8 by 8 | 9 by 9 | 10 by 10 | 11 by 11 | 12 by 12 |
| 2 | 60 | 196 | 229 | 308 | 406 | 524 | 667 | 835 | 1,034 | 1,266 | 1,534 |
| 4 | 60 | 255 | 298 | 400 | 526 | 679 | 862 | 1,079 | 1,334 | 1,631 | 1,974 |
| 6 | 60 | 299 | 349 | 468 | 615 | 794 | 1,007 | 1,260 | 1,556 | 1,901 | 2,299 |
| 8 | 60 | 335 | 391 | 524 | 689 | 888 | 1,126 | 1,408 | 1,739 | 2,123 | 2,567 |
| 10 | 60 | 366 | 427 | 573 | 752 | 969 | 1,229 | 1,537 | 1,897 | 2,315 | 2,799 |
| 12 | 60 | 394 | 459 | 616 | 809 | 1,042 | 1,321 | 1,651 | 2,038 | 2,487 | 3,006 |
| 2 | 70 | 122 | 143 | 193 | 256 | 333 | 426 | 537 | 669 | 823 | 1,003 |
| 4 | 70 | 154 | 181 | 244 | 323 | 419 | 535 | 673 | 836 | 1,028 | 1,251 |
| 6 | 70 | 178 | 209 | 281 | 372 | 482 | 615 | 773 | 959 | 1,178 | 1,432 |
| 8 | 70 | 198 | 232 | 312 | 412 | 534 | 680 | 855 | 1,061 | 1,301 | 1,580 |
| 10 | 70 | 215 | 252 | 339 | 447 | 579 | 737 | 926 | 1,148 | 1,408 | 1,709 |
| 12 | 70 | 231 | 270 | 363 | 478 | 619 | 788 | 989 | 1,226 | 1,503 | 1,824 |
| 2 | 80 | 88 | 103 | 141 | 188 | 245 | 315 | 399 | 499 | 616 | 753 |
| 4 | 80 | 108 | 127 | 173 | 230 | 301 | 386 | 488 | 609 | 752 | 918 |
| 6 | 80 | 123 | 144 | 196 | 261 | 340 | 436 | 552 | 688 | 849 | 1,036 |
| 8 | 80 | 135 | 159 | 215 | 286 | 372 | 477 | 603 | 752 | 927 | 1,130 |
| 10 | 80 | 145 | 171 | 231 | 307 | 400 | 513 | 647 | 807 | 994 | 1,212 |
| 12 | 80 | 155 | 182 | 246 | 326 | 425 | 544 | 686 | 855 | 1,053 | 1,283 |

[^5]

Figure 9—Dependence of average and upper 99\% confidence limits of heating time for ponderosa pine boards at $60^{\circ} \mathrm{F}$ initial temperature $\left({ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8\right.$; 1 in . $=\mathbf{2 5 . 4} \mathbf{~ m m}$ ).

## Appendix-Equations for Calculating Upper Confidence Levels of Heating Times

The general form of the equation for calculating the upper confidence level for heating time is

$$
\exp \left(f\left(\ln (x), \ln (\mathrm{wbd}), \ln \left(T_{\mathrm{i}}\right), \alpha\right)\right)
$$

where $x$ is thickness of boards or one cross-sectional dimension of timbers; wbd, wet-bulb depression in ${ }^{\circ} \mathrm{F} ; T_{\mathrm{i}}$, initial temperature in ${ }^{\circ} \mathrm{F} ; \alpha$, confidence level.

## Ponderosa Pine Boards

```
f(ln}(x),\operatorname{ln}(\textrm{wbd}),\operatorname{ln}(\mp@subsup{T}{\textrm{i}}{\textrm{i}}),\alpha
    = 5.0390 + 1.5489 ln}(x
    +0.25739 ln(wbd) - 0.62726 ln}(\mp@subsup{T}{\textrm{i}}{})+\mp@subsup{t}{26}{}(V\mp@subsup{V}{}{0.5
```

where $t_{26}$ is the Student's $t$ critical value for 26 degrees of freedom and confidence level $100(1-\alpha)$. For $99 \%$ confidence level, $t_{26}=2.479$.

$$
\begin{aligned}
V= & 0.0080659+3.4245+0.012576(\ln (x))^{2} \\
& +0.0016782(\ln (\mathrm{wbd}))^{2}+0.17411\left(\ln \left(T_{\mathrm{i}}\right)\right)^{2} \\
& -2.0(0.18580) \ln (x)-2.0(0.049441) \ln (\mathrm{wbd}) \\
& -2.0(0.77169) \ln \left(T_{\mathrm{i}}\right)+2.0(0.0026822) \ln (x) \ln (\mathrm{wbd}) \\
& +2.0(0.041650) \ln (x) \ln \left(T_{\mathrm{i}}\right) \\
& +2.0(0.01073) \ln (\mathrm{wbd}) \ln \left(T_{\mathrm{i}}\right)
\end{aligned}
$$

## Ponderosa Pine Timbers

```
f(ln}(x),\operatorname{ln}(\textrm{wbd}),\operatorname{ln}(\mp@subsup{T}{\textrm{i}}{\textrm{i}}),\alpha
    =4.5880 + 1.6105 ln}(x
    +0.20466 ln (wbd) - 0.52056 ln}(\mp@subsup{T}{\textrm{i}}{\textrm{i}})+\mp@subsup{t}{38}{}(V\mp@subsup{)}{}{0.5
```

where $t_{38}$ is the Student's $t$ critical value for 38 degrees of freedom and confidence level $100(1-\alpha)$. For $99 \%$ confidence level, $t_{38}=2.429$.

$$
\begin{aligned}
V= & 0.021308+0.21943+0.0036715(\ln (x))^{2}+0.00095297 \\
& (\ln (\text { wbd }))^{2}+0.011565\left(\ln \left(T_{\mathrm{i}}\right)\right)^{2}-2.0(0.018617) \ln (x) \\
& +2.0(0.0027247) \ln (\mathrm{wbd})-2.0(0.048852) \ln \left(T_{\mathrm{i}}\right) \\
& -2.0(0.00021215) \ln (x) \ln (\text { wbd }) \\
& +2.0(0.0031414) \ln (x) \ln \left(T_{\mathrm{i}}\right) \\
& -2.0(0.0010160) \ln (\mathrm{wbd}) \ln \left(T_{\mathrm{i}}\right)
\end{aligned}
$$

## Douglas-Fir Boards

```
\(f\left(\ln (x), \ln (\mathrm{wbd}), \ln \left(T_{\mathrm{i}}\right), \alpha\right)\)
    \(=8.0391+1.6341 \ln (x)\)
    \(+0.26546 \ln (\) wbd \()-1.3553 \ln \left(T_{\mathrm{i}}\right)+t_{26}(V)^{0.5}\)
```

where $t_{26}$ is the Student's $t$ critical value for 26 degrees of freedom and confidence level $100(1-\alpha)$. For $99 \%$ confidence level, $t_{26}=2.479$.

$$
\begin{aligned}
V= & 0.033215+21.429+0.011386(\ln (x))^{2} \\
& +0.0033429(\ln (\mathrm{wbd}))^{2}+1.1006\left(\ln \left(T_{\mathrm{i}}\right)\right)^{2} \\
& -2.0(0.22181) \ln (x)-2.0(0.037172) \ln (\text { wbd }) \\
& -2.0(4.8550) \ln \left(T_{\mathrm{i}}\right)+2.0(0.0013054) \ln (x) \ln (\text { wbd }) \\
& +2.0(0.049734) \ln (x) \ln \left(T_{\mathrm{i}}\right) \\
& +2.0(0.0070447) \ln (\text { wbd }) \ln \left(T_{\mathrm{i}}\right)
\end{aligned}
$$

## Douglas-Fir Timbers

$$
\begin{aligned}
& f\left(\ln (x), \ln (\mathrm{wbd}), \ln \left(T_{\mathrm{i}}\right), \alpha\right) \\
& \quad=15.026+0.45495(\ln (x))^{2} \\
& \quad+0.33554 \ln (\mathrm{wbd})-2.7028 \ln \left(T_{\mathrm{i}}\right)+t_{38}(V)^{0.5}
\end{aligned}
$$

where $t_{38}$ is the Student's $t$ critical value for 38 degrees of freedom and confidence level $100(1-\alpha)$. For $99 \%$ confidence level, $t_{38}=2.429$. Note the $(\ln (x))^{2}$ term instead of $\ln (x)$.

$$
\begin{aligned}
V= & 0.015284+4.6343+0.00018312(\ln (x))^{4} \\
& +0.0015549(\ln (\mathrm{wbd}))^{2}+0.25738\left(\ln \left(T_{\mathrm{i}}\right)\right)^{2} \\
& -2.0(0.018841)(\ln (x))^{2}+2.0(0.070693) \ln (\mathrm{wbd}) \\
& -2.0(1.0918) \ln \left(T_{\mathrm{i}}\right)-2.0(0.00028182)(\ln (x))^{2} \ln (\mathrm{wbd}) \\
& +2.0(0.0043519)(\ln (x))^{2} \ln \left(T_{\mathrm{i}}\right) \\
& -2.0(0.016836) \ln (\mathrm{wbd}) \ln \left(T_{\mathrm{i}}\right)
\end{aligned}
$$

Note the $(\ln (x))^{4}$ and $(\ln (x))^{2}$ terms instead of $(\ln (x))^{2}$ and $\ln (x)$.


[^0]:    ${ }^{{ }^{\circ}} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

[^1]:    ${ }^{\mathrm{a}^{\circ}} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

[^2]:    ${ }^{a_{0}} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

[^3]:    ${ }^{{ }^{\circ}} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

[^4]:    ${ }^{a_{0}} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

[^5]:    ${ }^{a_{0}} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$.

