/I Define the method for finding intersections between a line and a circle

public static int FindLineCircleIntersections(Vector3 circleCenter, double radius,
Vector3 lineStart, Vector3 lineEnd,
out Vector3 intersectionl, out Vector3 intersection?2)

/I Declare variables for calculations
double dx, dy, A, B, C, det, t;

/I Calculate delta x and delta y which are the differences in the x and y coordinates
I/l between the end and start of the line

dx = lineEnd.X - lineStart.X;

dy = lineEnd.Y - lineStart.Y;

/I Compute the coefficients A, B, and C of the quadratic equation representing
/Il the intersection points between the line and the circle
A=dx *dx +dy * dy;
B =2 (dx * (lineStart.X - circleCenter.X) + dy * (lineStart.Y - circleCenter.Y));
C = (lineStart.X - circleCenter.X) * (lineStart.X - circleCenter.X) +

(lineStart.Y - circleCenter.Y) * (lineStart.Y - circleCenter.Y) -

radius * radius;

/I Calculate the determinant to determine if there are real solutions to the quadratic equation
det=B*B-4*A*C;

Il Check if there are no real solutions or if Ais too close to O for a valid solution
if ((A <=0.0000001) || (det < 0))
{
/l'If no real solutions, set intersection points to NaN (Not a Number) and return O intersections
intersection1 = new Vector3(float.NaN, float.NaN, float.NaN);
intersection2 = new Vector3(float.NaN, float.NaN, float.NaN);
return O;

else if (det == 0)
{

/I If the determinant is O, there's exactly one solution on the line (tangent to circle)
t=-B/(2*A),

/I Compute this single intersection point using the parameter t

intersection1 = new Vector3((float)(lineStart.X + t * dx), (float)(lineStart.Y + t * dy), lineStart.Z);
/I The second intersection point is not applicable here, set to NaN

intersection2 = new Vector3(float.NaN, float.NaN, float.NaN);

return 1; // Return 1 to indicate one intersection point

}

else

{
/I Two solutions exist if determinant is positive (line intersects circle at two points)
t = (float)((-B + Math.Sqrt(det)) / (2 * A));
/I Calculate the first intersection point using one root of the quadratic equation
intersection1 = new Vector3((float)(lineStart.X + t * dx), (float)(lineStart.Y + t * dy), lineStart.Z);
/I Calculate the second intersection point using the other root
t = (float)((-B - Math.Sqrt(det)) / (2 * A));
intersection2 = new Vector3((float)(lineStart.X + t * dx), (float)(lineStart.Y + t * dy), lineStart.Z);
return 2; // Return 2 to indicate two intersection points

}

}

/I Define the method to determine if a point is located on a given arc
public static bool IsPointOnArc(Vector2 point, Vector2 arcCenter, double arcRadius, double startAngle, double endAngle)

{

double buffer = 0.000001; // Define a small tolerance to account for floating-point precision issues

/I Calculate the distance from the point to the center of the arc
double dist = Vector2.Distance(point, arcCenter);
/'If the distance is not approximately equal to the arc's radius, the point is not on the arc
if (Math.Abs(dist - arcRadius) > buffer)
{
return false; // Point is not on the circle defined by the arc

}

/I Calculate the angle from the arc center to the point

double angleOfPoint = Math.Atan2(point.Y - arcCenter.Y, point.X - arcCenter.X) * (180.0 / Math.Pl);
// Normalize the angle to be within the range [0, 360]

angleOfPoint = (angleOfPoint < 0) ? 360 + angleOfPoint : angleOfPoint;

/I Normalize the start and end angles of the arc to be within [0, 360]
startAngle = startAngle % 360;
endAngle = endAngle % 360;

/I Determine if the angleOfPoint lies within the sweep of the arc

if (startAngle < endAngle)

{
/I The arc does not cross the 0 degree line, so simply check if the point's angle is between the start and end angles
return startAngle <= angleOfPoint && angleOfPoint <= endAngle;

}

else if (startAngle > endAngle)

/I The arc crosses the 0 degree line, check if the point's angle is either greater than startAngle or less than endAngle
return angleOfPoint >= startAngle || angleOfPoint <= endAngle;

else // case where startAngle == endAngle, meaning it's a full circle or just a point

/I For a full circle, any point on the circle is on the arc; for a point, the angle will match exactly
return Math.Abs(startAngle - angleOfPoint) < buffer;
}
}

/I Extension method for the Vector2 class to determine if a point is between two other points along a straight line
public static class Vector2Extensions
{

/I Extension method to check if a Vector2 point lies between two other Vector2 points

public static bool IsBetween(this Vector2 point, Vector2 start, Vector2 end)

{

/I Calculate vectors from start to point and start to end

Vector2 startToPoint = point - start;
Vector2 startToEnd = end - start;

/I Compute the dot product of the two vectors

double dotProduct = (startToPoint.X * startToEnd.X) + (startToPoint.Y * startToEnd.Y);
/I Calculate the squared length of the startToEnd vector

double squaredLength = (startToEnd.X * startToEnd.X) + (startToEnd.Y * startToEnd.Y);

/I The point is between start and end if the dot product is non-negative
/[and less than or equal to the squared length of the startToEnd vector
return dotProduct >= 0 && dotProduct <= squaredLength;

I/l good!!!

/I Load the DXF file from a specified location on the file system

DxfDocument loaded = DxfDocument.Load("C:\\Users\\Dave\\Downloads\\new block\\new\\arcline.dxf");
/I Set the active layout to Model Space within the DXF document

loaded.Entities.ActiveLayout = netDxf.Objects.Layout.ModelSpaceName;

/I Retrieve the collection of entities present in the Model Space block (default space for drawing)
EntityCollection entitiesBlocks = loaded.Blocks[Block.DefaultModelSpaceName].Entities;

/I Define an amount by which line entities will be extended (not currently used in the logic)
double extensionAmount = 0.1;

/I Initialize lists to store entities that intersect lines and arcs
List<EntityObject> intersectedLines = new List<EntityObject>();
List<EntityObject> intersectedArcs = new List<EntityObject>();

/I Loop through each line entity within Model Space
foreach (Line line in entitiesBlocks.OfType<Line>())

{
/[l Extend both ends of the line in 2D
/IConvert the Vector3 to a Vector2 and extend
Vector2 startPoint2D = new Vector2(line.StartPoint.X, line.StartPoint.Y);
Vector2 endPoint2D = new Vector2(line.EndPoint.X, line.EndPoint.Y);
/INot used atm and not needed, a the line projects to infinity
/IstartPoint2D = startPoint2D - extensionAmount * new Vector2(line.Direction.X, line.Direction.Y);
/lendPoint2D = endPoint2D + extensionAmount * new Vector2(line.Direction.X, line.Direction.Y);

/I Update the 3D line endpoints while preserving the original Z value

/INot used atm and not needed, a the line projects to infinity

/lline.StartPoint = new Vector3(startPoint2D.X, startPoint2D.Y, line.StartPoint.Z);
/Nine.EndPoint = new Vector3(endPoint2D.X, endPoint2D.Y, line.EndPoint.Z);

}

/I Loop through each arc entity within Model Space

foreach (Arc myarc in entitiesBlocks.OfType<Arc>())

{
/I Logic for extending the arc's start and end angles is commented out
/I It indicates a future provision for arc extension if necessary
/I Currently, arcs remain unaltered as the extension is not applied

}

Il Alist to keep track of unique intersection points as strings formatted to three decimal places
List<string> uniquelntersections = new List<string>();

Il A HashSet to store tuples consisting of entity handles, ensuring each intersection pair is only printed once
HashSet<Tuple<string, string>> printedPairs = new HashSet<Tuple<string, string>>();

/I Nested loops to compare each entity with every other entity to find intersections
for (inti = 0; i < entitiesBlocks.Count; i++)
{

for (intj =i+ 1;j < entitiesBlocks.Count; j++)

{

/' If both entities are lines, check for intersection between them
if (entitiesBlocks]i] is Line linel && entitiesBlocks[j] is Line line2)
{
/I Use a helper method to find the intersection point between two infinite lines
Vector2 intersection = MathHelper.Findintersection(
linel.StartPoint. ToVector2(),
linel.Direction.ToVector2(),
line2.StartPoint. ToVector2(),
line2.Direction.ToVector2(),
1e-6);

/Il Check if the intersection point is valid (not NaN)

if ('double.IsNaN(intersection.X) && !double.IsNaN(intersection.Y))

{
/I Ensure the found intersection point is within the segments of both lines
bool isWithinLine1 = intersection.IsBetween(line1.StartPoint. ToVector2(), line1.EndPoint. ToVector2());
bool isWithinLine2 = intersection.IsBetween(line2.StartPoint. ToVector2(), line2.EndPoint. ToVector2());

/I If the intersection is valid for both line segments

if (iIsWithinLinel && isWithinLine2)

{
/l Format the intersection point into a string identifier
string identifier = $"{intersection.X:F 3} {intersection.Y:F3}";

/I Check if this intersection is unique (has not been recorded yet)
if ('uniquelntersections.Contains(identifier))
{
// Add the lines and the identifier to the respective lists for tracking
intersectedLines.Add(line1);
intersectedLines.Add(line2);
uniquelntersections.Add(identifier);

/I Output the details of the intersection to the console
Console.WriteLine($"Intersection at ({intersection.X:F3},{intersection.Y:F3}) between Line: {linel.Handle} and

Line: {line2.Handle}");

}

}

}
}

/[If one entity is an arc and the other is a line, check for intersection between them
else if (entitiesBlocksJi] is Arc arc && entitiesBlocks[j] is Line line)

{

/I Prepare variables to store potential intersection points

Vector3 intersection1, intersection2;

/l Find the intersections between the line and the circle defined by the arc's center and radius
int intersections = FindLineCirclelntersections(

new Vector3((float)arc.Center.X, (float)arc.Center.Y, (float)arc.Center.Z),
arc.Radius,

line.StartPoint,

line.EndPoint,

out intersection1, out intersection2);

/I Iterate through the found intersection points
for (int k = 1; k <= intersections; k++)

{

Il Select the first or second intersection point based on the loop's iteration
Vector2 intersectionPoint =k ==1?

new Vector2(intersectionl.X, intersectionl.Y) :

new Vector2(intersection2.X, intersection2.Y);

/I Check if the intersection point lies on the arc segment and the line segment

if (IsPointOnArc(intersectionPoint, arc.Center.ToVector2(), arc.Radius, arc.StartAngle, arc.EndAngle) &&
intersectionPoint.IsBetween(line.StartPoint. ToVector2(), line.EndPoint. ToVector2()))

{
// Format the intersection point into a string identifier
string identifier = $"{intersectionPoint.X:F3},{intersectionPoint.Y:F3}";

/I Ensure this intersection has not been recorded before

if ('uniquelntersections.Contains(identifier))

/I Output the details of the intersection to the console

Console.WriteLine($"Intersection at ({intersectionPoint.X:F3},{intersectionPoint.Y:F3}) between Line:
{line.Handle} and Arc: {arc.Handle}");

/l Add the identifier to the list of unique intersections

uniquelntersections.Add(identifier);

}
}
}
}
/... Additional logic for other types of entity intersections could be added here
}
}

/I Save the modified DXF file to a specified location on the file system
loaded.Save("C:\\Users\\Dave\\Downloads\\new block\\new\\1a.dxf");

